
Common Desktop Environment 1.0

Help System Author’s and
Programmer’s Guide

This edition of the Common Desktop Environment Advanced User’s and System
Administrator’s Guide applies to AIX Version 4.2, and to all subsequent releases of
these products until otherwise indicated in new releases or technical newsletters.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and
FAR 52.227-19.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
OR NON-INFRINGEMENT.

The code and documentation for the DtComboBox and DtSpinBox widgets were
contributed by Interleaf, Inc. Copyright 1993, Interleaf, Inc.

Copyright  1993, 1994, 1995 Hewlett-Packard Company
Copyright  1993, 1994, 1995 International Business Machines Corp.
Copyright  1993, 1994, 1995 Sun Microsystems, Inc.
Copyright  1993, 1994, 1995 Novell, Inc.

All rights reserved. This product and related documentation are protected by copyright
and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or related documentation may be reproduced in any form by any
means without prior written authorization.

All rights reserved. RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by
the United States
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and
AR 52.227-19.

iiiContents

Part 1—Introduction

1. Introducing the Help System 1.
Developer’s Toolkit 1.
Overview of Online Help 2.
 Help Information Model 2.
Help User Interface 3.
Help Topic Organization 7.
The Author’s Job 9.
Author’s Workflow 10.
 Programmer’s Job 12.

Part 2 —The Author’s Job

2. Organizing and Writing a Help Volume 14.
Help Volume Components 14.
General Markup Guidelines 15.
A Help Volume at a Glance 17.
Help Source Files 17.
Help Files in File Manager 18.
Writing Your First Help Volume: A Step–by–Step
Example 19.
Creating a Topic Hierarchy 22.
Creating Meta Information Topics 24.
Adding a Nonhierarchical Topic 26.
Accessing Topics 27.
 Using Entities 28.

3. Writing a Help Topic 33.
Creating Help Topics 33.
Creating Structure within a Topic 34.
Entering Inline Elements 40.
Creating Hyperlinks 42.
Execution Link Control 47.
Displaying Graphics 50.
 Including Special Characters 52.
Including Comments and Writer’s Memos 53.
Creating an Index 54.
Creating a Glossary 55.

4. Processing and Displaying a Help Volume 57.
Overview 57.
Creating Run–Time Help Files 58.
Viewing a Help Volume 60.
Adding Your Help to the Browser Volume 61.
Printing Help Topics 64.
Testing Your Help 65.

iv CDE Help System Author’s and Programmer’s Guide

5. HelpTag Markup Reference 66.
<!–– ... ––> 67.
<abbrev> 67.
<abstract> 68.
<<annotation text>> 69.
<book> 70.
<caution> 70.
<chapter> 71.
<computer> 72.
<copyright> 73.
<dterm> 73.
<emph> 74.
<!entity> 75.
<esc> 76.
<ex> 77.
<figure> 78.
<glossary> 79.
<graphic> 80.
<head> 81.
<helpvolume> 82.
<hometopic> 83.
<idx> 84.
<image> 84.
<item> 86.
<keycap> 86.
<lablist> 87.
<lineno> 89.
<link> 90.
<list> 91.
<location> 93.
<memo> 94.
<metainfo> 95.
<newline> 96.
<note> 96.
<otherfront> 97.
<otherhead> 97.
<p> 98.
<procedure> 100.
<quote> 100.
<rsect> 101.
<s1>0<s9> 102.
<sub> 103.
<super> 104.
<term> 104.
<title> 105.
<user> 106.
<var> 106.

vContents

<vex> 107.
<warning> 108.
<xref> 109.

6. Summary of Special Character Entities 111.

7. Command Summary 117.
Help System Commands 117.
Processing HelpTag Files (dthelptag) 117.
Displaying Help Topics (dthelpview) 119.
Generating a Browser Help Volume (dthelpgen) 119.

8. Reading the HelpTag Document Type Definition 121
Document Type Definition 121.
DTD Components 121.
Formal Markup 124.
Processing Formal Markup 128.

Part 3 —The Programmer’s Job

9. Creating and Managing Help Dialog Boxes 129. . . .
Help Dialog Boxes 129.
General Help Dialog 129.
Quick Help Dialog 131.
Summary of Application Program Interface 133.

10. Responding to Help Requests 134.
Requesting Help 134.
Displaying Help Topics 135.
Enabling the Help Key (F1) 137.
Providing a Help Menu 140.
Supporting Item Help Mode 141.

11. Handling Events in Help Dialogs 143.
Supporting Help Dialog Events 143.
Responding to Hyperlink Events 144.
Detecting When Help Dialogs Are Dismissed 145.
Using the Application–Configured Button 145.

12. Providing Help on Help 147.
Accessing Help on Help in an Application 147.
Writing Your Own Help on Help Volume 150.

13. Preparing an Installation Package 152.
Overview 152.
Delivering Online Help 152.
Creating an Installation Package 152.
Registering Your Application and Its Help 154.

vi CDE Help System Author’s and Programmer’s Guide

Product Preparation Checklists 155.

Part 4 —Internationalization

14. Native Language Support 157.
Internationalized Online Help 157.
Internationalization Factors 157.
Understanding Font Schemes 162.
Creating a Formatting Table 165.
Displaying a Localized Help Volume 166.
Preparing Online Help for International Audiences 166. . .

15. HelpTag 1.3 DTD 167.

Glossary 175.

Index 181.

viiPreface

Preface
This manual describes how to develop online help for Common Desktop Environment
application software. It covers how to create help topics and how to integrate online help into
an OSF/Motif application.

Who Should Use This Book
The audience for this book includes:

• Authors who design, create, and view online help information

• Developers who want to create software applications that provide a fully integrated help
facility

How This Book Is Organized
This book has four parts. Part 1 describes the collaborative role that authors and developers
undertake to design application help. Part 2 provides information for authors organizing and
writing online help. Part 3 describes the Help System application programmer’s toolkit. Part
4 contains information for both authors and programmers about preparing online help for
different language environments.

This book includes these chapters:

Part 1— Introduction

Introducing the Help System provides an overview of authors’ and developers’ collaborative
role in producing online help.

Part 2— The Author’s Job

Organizing and Writing a Help Volume describes the components that make up a help
volume.

Writing a Help Topic introduces the Help System markup language and gives examples of
elements used to format different types of information. It describes how to include graphics
and create hyperlinks.

Processing and Displaying a Help Volume describes how to process a marked–up file (or
files) to generate a single run–time file for online viewing.

HelpTag Markup Reference lists in alphabetical order the HelpTag markup language
elements, with an example of each element.

Summary of Special Character Entities provides a list of characters and associated entity
names that can be used to insert special characters into help topic text.

Command Summary summarizes how to process and view a help volume by entering
commands in a terminal emulator window.

Reading the HelpTag Document Type Definition describes the HelpTag DTD and how to use
it to create fully compliant Standard Generalized Markup Language (SGML) help files.

Part 3— The Programmer’s Job

Creating and Managing Help Dialog Boxes introduces the Help Dialog widgets and explains
how to use them.

Responding to Help Requests explains how an application provides entry points to access
different types of help.

viii CDE Help System Author’s and Programmer’s Guide

Handling Events in Help Dialogs shows how an application can use a callback structure to
handle hyperlink events.

Providing Help on Help describes how an application can provide a help module that tells
users how to use the Help System.

Preparing an Installation Package covers what to include in an installation package to supply
online help with an application.

Part 4— Internationalization

Native Language Support identifies language–dependent files used by the Help System.

Glossary is a list of words and phrases found in this book and their definitions.

Related Books
Related Common Desktop Environment books that you may find helpful are:

• Advanced User’s and System Administrator’s Guide

• Internationalization Programmer’s Guide

• Style Guide and Certification Checklist

• User’s Guide

For a technical description of Standard Generalized Markup Language (SGML), refer to:

• The SGML Handbook by Charles F. Goldfarb, Oxford University Press (ISBN
0–19–853737–9).

What Typographic Changes and Symbols Mean
The following table describes the type changes and symbols used in this book.

Typographic Conventions

Typeface or
Symbol

Meaning Example

AaBbCc123 The names of commands,
files, and directories;
onscreen computer output

Edit your .login file.
Use ls –a to list all files.
system% You have mail.

AaBbCc123 Command–line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or
terms, or words to be
emphasized

Read User’s Guide.
These are called class options.
You must be root to do this.

1CDE Help System Author’s and Programmer’s Guide

Part 1—Introduction

Introducing the Help System

The Help System provides a complete set of tools to develop online help for application
software. It enables authors to write online help that includes graphics and text formatting,
hyperlinks, and communication with the application.

The Help System also provides a programmer’s toolkit for integrating online help into an
application. The Help System application program interface supplies two specialized help
dialogs and supporting routines that are used to display, navigate, search, and print online
help modules.

This section introduces the Help System and briefly describes the user interface. It shows
how help information is organized, outlines how to create and process help modules, and
discusses the collaborative role of authors and developers in the design and creation of
application help.

• Developer’s Toolkit

• Overview of Online Help

• Help Information Model

• Help User Interface

• Help Topic Organization

• The Author’s Job

• Programmer’s Job

Developer’s Toolkit
The Help System Developer’s Toolkit contains tools to write, process, and view online help
and contains an application programming library.

For Authors
• HelpTag markup language —a set of tags used in text files to mark organization and

content of your online help.

• HelpTag software —a set of software tools for converting the HelpTag files you write into
run–time help files.

• Helpview application —a viewer program for displaying your online help so you can read
and interact with it just as your audience will.

Refer to Organizing and Writing a Help Volume to learn more about creating and processing
online help.

For Application Developers
• DtHelp programming library—an application program interface (API) for integrating help

windows into your application.

• A sample program—a simple example that shows how to integrate the Help System into
an OSF/Motif application.

2 CDE Help System Author’s and Programmer’s Guide

Overview of Online Help
It’s virtually impossible—and certainly impractical—for anyone to learn and remember
everything there is to know about the computer hardware and software they use to do their
job. Nearly every computer user needs help at one time or another.

Online help, unlike a printed manual, has the power of the computer at its disposal. Most
importantly, this power makes it possible to adapt the information to the user’s current
”context.” Context–sensitive help provides just enough help to get the user back on task. In
developing your online help, remember that users need different types of help at different
times. By anticipating users’ questions, you can design your application help to respond in a
logical and intuitive manner.

Help Information Model
There are two general styles of online help:

• Application help, whose primary role is to be an integrated part of an OSF/Motif
application.

• Standalone help, whose primary role is to provide online access to task, reference, or
tutorial information, independent of any application software.

If you are developing online help for an application, you may choose to organize the
information exclusively for access within the application. Or, you may design the information
such that it can be browsed without the application present, as in standalone help.

Part of the Application
Help promotes a high degree of integration between the application and its online help.
From the user’s perspective, the help is part of the application. This approach minimizes the
perceived ”distance” away from the application that the user must travel to get help.

Staying close to the application makes users more comfortable with online help and gets
them back on task as quickly as possible.

Types of Help
Online help can be divided into three general categories:

• Automatic help—The application determines when help is needed and what to present.
This is sometimes called system–initiated help.

• Semiautomatic help—The user decides when help is needed, but the system determines
what to present. Semiautomatic help is initiated by a user’s gesture or request for help,
such as pressing F1. The system’s response is called context–sensitive help because it
considers the user’s current context in deciding what information to display.

• Manual help—The user requests specific information, such as from a Help menu.

How Users Get Help
A user can request help in several ways. Most applications provide a Help menu and Help
key as well as Help buttons in dialog boxes.

3CDE Help System Author’s and Programmer’s Guide

Help Key
Within most applications, the primary way for a user to request help is by pressing the help
key. In recent years, the F1 function key has become a defacto standard help key for many
workstation and personal computer products.

The Style Guide and Certification Checklist recommends the use of F1 as the help key, and
the OSF/Motif programmer’s toolkit even provides some built–in behavior to make it easier
to implement the help key in OSF/Motif applications.

Some computers provide a Help key on the keyboard.

Help Menu
The Help menu is a common way to provide access to help information. OSF/Motif
applications provide a Help menu, which is right–justified in the menu bar. The Style Guide
and Certification Checklist makes recommendations regarding the commands contained in a
Help menu.

Application Help menu

Help Buttons
Many dialog boxes also provide a Help button to get help on the dialog. The Style Guide and
Certification Checklist recommends that choosing the Help button in a dialog box be
equivalent to pressing the Help key while using that dialog. Exceptions should be made for
complex dialogs, where help on individual controls within the dialog box is appropriate.

Help User Interface
This section is an overview of the graphical interface provided by the Help System. For a
detailed description of Help features and capabilities, refer to the User’s Guide or, to view
the corresponding online help, you can open the desktop Front Panel Help Viewer (see “To
Display the browser Volume”. Then choose, Common Desktop Environment and Desktop
Help System.

While using an application, a user can request help by pressing the Help key or by selecting
the application’s Help menu. In addition, applications integrating the Help System can be
installed so that their respective help modules are accessible from the desktop Help Viewer.
This enables a user to browse help information supplied by different applications without
having to run each application.

Help Windows
When a user requests help, the Help System displays a help window. There are two types of
help windows: general help and quick help. A general help window has a menu bar, topic

4 CDE Help System Author’s and Programmer’s Guide

tree, and a topic display area. The topic tree lists help topics that a user can choose. The
lower portion of the window—the topic display area—displays the selected topic.

A quick help window is a streamlined help window. It has only a topic display area and one
or more dialog buttons. Quick help windows are often used for short, self–contained
information such as a definition.

 General help and quick help window

Hyperlinks
Help topics often contain hyperlinks that “jump” to related help information. Both text and
graphics can be used as hyperlinks. Figure shows formatting styles used to identify
hyperlinks.

Solid or dashed underscores identify words or phrases that are hyperlinks. The solid
underscore, or standard hyperlink, is most common. When the hyperlink is selected, the
related topic is displayed. An author designates whether the hyperlink topic is displayed in
the current help window or a new window. The dashed underscore represents a definition
link. When selected, the related topic is displayed in a quick help window. A gray,
open–corner box (dashed or solid line) designates a graphic hyperlink.

 Formats for graphic and text hyperlinks

Help Navigation
The topic tree shown in Figure is an outline of topics in the current help volume. The first
topic at the top of the list is the home topic, or beginning of the help volume. An arrow (⇒)
points to the current topic and shows the user’s location in the help volume.

5CDE Help System Author’s and Programmer’s Guide

Topic tree in a general help dialog box

To display a help topic, a user selects a title in the topic tree or a hyperlink within the topic
display area. The user can browse the outline of topics by scrolling the list and then select
any topic. Navigation commands enable the user to return to previous topics or to the
beginning of the help volume.

Help Navigation Buttons
The general help dialog includes three dialog buttons: Backtrack, History, and Index. These
features are also available as menu selections.

• Backtrack — returns to the previous topic. To retrace topics visited, press Backtrack
repeatedly until the desired topic is displayed.

• History — displays the History dialog box. This dialog box lists the help volumes and
topics that have been visited. To return to any topic in the list, select its title.

• Index — displays the Index Search dialog box. This dialog lists all the words and phrases
that the author has marked as index entries. Selecting an index entry, then one of the
topics where the entry occurs, displays that topic in the general help dialog.

When using the Help Viewer from the desktop Front Panel, the general help dialog includes
an additional dialog button called Top Level. After exploring different help volumes, a user
can select this button to return to the top–level of the desktop browser help volume.

Help Menus
A general help dialog menu bar has five menus: File, Edit, Search, Navigate, and Help. The
Search and Navigate menus contain commands for the index and navigation buttons
described previously. In addition, the Navigate menu has a Home Topic command that
returns to the beginning of the help volume. The remaining menus provide these features:

• File menu — duplicates a help window, prints a help topic or the current help volume, or
closes the help window.

• Edit menu — copies text from the help window to another application.

• Help menu — provides help information that describes features of the help dialogs and
how to use them.

Help Index
A help volume has an index of important words and phrases that the user can search to find
help topics on a subject. A user can browse or search the index of the current volume,
selected volumes, or all help volumes available on the system. Regular expressions such as
* (asterisk) and ? (question mark) can be used to search for topics. To view the
corresponding help topic, the user selects the index entry.

6 CDE Help System Author’s and Programmer’s Guide

Index search dialog box

Because the help index can be large even for a single volume, index entries can be
expanded or contracted. A prefix notation, either a + (plus) or – (minus) sign, is used to
show whether an index entry is expanded or contracted. A minus sign indicates that all of
the entries are displayed, whereas a plus sign indicates that the entry can be expanded to
show additional index entries.

In Figure the –36 prefix means there are 36 index entries displayed. The +3 notation
identifies contracted entries. Selecting a contracted entry causes the list to expand, and the
+ sign changes to a – sign. The last index entry shown in the figure has been expanded in
this manner.

Index entry prefix notation

Printing from Help
The user can print an individual help topic, a table of contents and index, or the entire help
volume. Printed output is text–only. Printing options, such as paper size, number of copies,
and destination printer, can also be set in the Print dialog box.

7CDE Help System Author’s and Programmer’s Guide

Print dialog box

Help Topic Organization
An author organizes help information into a logical framework. Most times, but not always,
this results in an outline, or a hierarchy of topics. The topic hierarchy in Figure consists of a
main level, three sections, and subordinate topics. Although Help has been optimized for
information that is organized in a hierarchy, you are free to create any kind of organization
you want.

Hierarchy of topics

Help Topic
A help topic is a unit of information identified with a unique ID. A set of tags provided by the
Help System is used to mark help topics and create a structural framework. The Help
Viewer, which is part of the Help System, is able to directly access and display a help topic.

Help Volume
A help volume is a collection of topics that describe an application or a particular subject. If
you are developing application help, typically there’s one help volume per application.
However, for complex applications, or a collection of related applications, you might develop
several help volumes.

Help Family
Often, software is available as a set of related applications known as a product family. For
example, a set of office productivity applications may include a word processor, a
spreadsheet application, and a drawing program. Because each application may have its

8 CDE Help System Author’s and Programmer’s Guide

own help volume, it may be desirable to group the related help volumes in a help family. A
help family can include a single help volume or several volumes.

Assembling your help volumes into a help family is optional. It is required only if you want
your help available for browsing within a help browser such as the Help Viewer in the Front
Panel.

Refer to “To Create a Help Family ” for a description of help family files and how they are
used.

Help Browser Volume
The desktop provides a special help volume called the browser volume that lists help
installed on your system. Clicking the Help Viewer control in the Front Panel displays the
browser volume shown in Figure.

It lists help families (underlined titles) and any volumes that are members of the help family.

Browser help volume

The browser volume allows access to application–specific help without using the application.
Or, if you are writing standalone help, this is the only way for users to get to your help. Even
if you have only a single help volume, it must belong to a help family to be browsable using
the Help Viewer.

“Adding Your Help to the Browser Volume” describes how to create a family file and what
you need to do to make your help volume accessible from the browser volume.

9CDE Help System Author’s and Programmer’s Guide

The Author’s Job
Writing online help differs from writing printed manuals, so it is important to understand who
you are writing for, how the information is accessed, and how the information fits into an
application.

Objectives for Online Help
The two most important objectives for designing quality online help are:

• Get the user back on task as quickly and successfully as possible.

• Educate the user to prevent future need for assistance.

Applying these objectives will help you make decisions regarding what type of help is best
and what amount of detail is needed.

Know Your Audience
Just as with any writing, to do a good job, you must know your audience and understand
what they require from the information you are writing. Most importantly, with online help,
you need to know the tasks they are attempting and the problems they may encounter.

Consider How Your Help Is Accessed
It is just as important to understand how users will access your help as it is to identify your
audience correctly.

Application Help
If you are writing help for an application, you need to decide which topics are browsable and
which topics are available from the application as context–sensitive help. A topic is
browsable if you can navigate to it using the topic tree or hyperlinks. Topics designed
exclusively for context–sensitive help might not be browsable because the only way to
display the topic may be from within a particular context in the application.

You must also decide if you want your application’s help volume to be registered. Registered
help volumes can be displayed by other applications (such as the Help Viewer), making the
information more widely accessible. If another help volume contains hyperlinks to topics in
your help volume, your help volume must be registered.

See “Registering Your Application and Its Help” for information about installing and
registering your application.

Standalone Help Volumes
If you are writing a standalone help volume (a help volume not associated with an
application), you may choose to do things differently.

First, you must provide a path for users to get to all the topics you’ve written. That is, every
topic must be browsable through at least one hyperlink. Also, because there’s no application
associated with your help, you must rely on a help viewer (such as Help Viewer) to display
your help volume.

Evaluate How to Present Help
An application can incorporate different types of help. It is important to evaluate what kind of
help is best suited for your application. For example, the same help information may be
presented in a variety of ways. Some choices include key features, a tutorial, examples, task
instructions, shortcuts, troubleshooting, reference information, glossary of terms, or referral

10 CDE Help System Author’s and Programmer’s Guide

to hard copy or other online documentation. A help volume often combines different
presentations.

Collaborate with the Application Programmer
If you are writing application help, you should work closely with the application programmer.
The degree to which the Help System is integrated into an application is a design decision
that you make collectively.

If an application and its help have very loose ties, there may be only a handful of topics that
the application is able to display directly. This is easier to implement.

In contrast, the application could provide specific help for nearly every situation in the
application. This requires more work, but benefits the user if done well.

It’s up to you and your project team to determine the right level of help integration for your
project.

Author’s Workflow
After designing your help, you create and process help topics to produce a help volume.
Your focus as an author is on these key tasks:

• Write help topics

• Create run–time help files

• View the help volume

Write Help Topics with HelpTag
Online help is written in ordinary text files. You use special codes, or tags, to markup
elements within the information. The tags form a markup language called HelpTag.

The HelpTag markup language defines a hierarchy of elements that define high–level
elements, such as chapters, sections, and subsections, and low–level elements such as
paragraphs, lists, and emphasized words.

“General Markup Guidelines” gives a brief description of using markup. For a detailed
description of each element see “HelpTag Markup Reference”.

Shorthand Markup
The tag set can be used in two different ways to produce run–time help files: shorthand
markup or formal markup. The first approach, called shorthand markup, is optimized for
authors using a standard text editor to “hand–tag” information. That is, the author types the
tags in addition to the actual help topic text. To minimize the impact of hand–tagging,
shorthand markup incorporates several shortcuts. First, it reduces the number of required
start and end tags. It also offers simple character combinations for frequently used markup
and stylistic changes.

Formal Markup
Formal markup is a Standard Generalized Markup Language (SGML) that an author can
use to create fully compliant SGML help topics. It requires start and end tags for all
elements. Additionally, the structure of each element must be explicitly tagged. Therefore,
the number of tags increases significantly using formal markup. Although an author can
enter formal markup using a standard editor, a structured editor is recommended.

11CDE Help System Author’s and Programmer’s Guide

Structured Editors
New tools, called structured editors, are becoming available in response to the need to
create SGML markup efficiently. Typically, a structured editor provides a context–sensitive
menu. That is, the elements that appear in the menu dynamically change based on the
location of the cursor in the document.

For example, if you are entering a list, then the menu contains only elements that are valid
within the context of a list element. This built–in “intelligence” allows an author to create
markup easily.

When an author chooses an element, such as section, head, or list, the editor generates the
corresponding start, end, and any intermediate structural tags. For example, when an author
selects a chapter element, the editor automatically inserts the intermediate tags required by
this element. The author simply types the chapter title. Viewing the generated tags is
optional; authors can suppress the tags.

Note: Either markup approach— shorthand or formal— produces identical online
information when compiled and displayed. Choosing which markup approach to use
depends on the requirements for your help information and your available authoring
tools.

Using Formal Markup
If you intend to use formal markup, first read the chapters in Part 2 – The Author’s Job to
become familiar with the set of HelpTag elements. Although shorthand and formal markup
share the same tag set, there are several important differences.

Reading the HelpTag Document Type Definition explains key components of the Document
Type Definition (DTD) and shows you how to create formal markup. The complete HelpTag
Document Type Definition appears in Appendix A.

Note: The Developer’s Kit includes the HelpTag Document Type Definition. The file is
located in the /usr/dt/dthelp/dthelptag/dtd directory and is named
helptag.dtd.

See Also
• Chapters 2, 3, and 4 introduce and explain how to use shorthand markup.

• HelpTag Markup Reference gives a detailed description of each tag listed in alphabetical
order.

• Reading the HelpTag Document Type Definition describes formal markup.

• dthelptagdtd(4) man page

Think Structure, Not Format
If you are familiar with other publishing systems, you may be accustomed to formatting
information as you like to see it. Authoring with HelpTag requires you to think about structure
and content, not format.

As you write, you use tags to mark certain types of information. When you do so, you are
identifying what the information is, but not how it should be formatted.

For instance, to refer to a book title, include markup like this:

<book>System Administrator’s Reference Guide</book>

This abstraction separates structure and content from format, which allows the same
information to be used by other systems and perhaps formatted differently. For instance,
Help displays book titles using an italic font. However, on another system an italic font may
not be available, so the formatter could decide that book titles are underlined.

12 CDE Help System Author’s and Programmer’s Guide

Create Run–Time Help Files
The text files you write must be ”compiled” using the HelpTag software to create run–time
help files. It’s the run–time help files that are accessed when the user requests help.
Run–time files use the Semantic Delivery Language (SDL) format. This delivery language is
based on an SGML document type definition designed expressly for online information
delivery.

The Help System defines desktop actions and data types for help–specific files. This lets
you easily create a run–time file from your desktop by selecting the icon of a help source file
and choosing a menu command that processes the file. A .sdl extension is used to
identify run–time help files. If any errors occurred during processing, they are reported in an
error file (volume.err).

Refer to “Creating Run–Time Help Files” for complete instructions to create a run–time help
file. For general information about desktop actions and data types, refer to the Advanced
User’s and System Administrator’s Guide .

Review Help as the User Will See It
During the authoring process, you will need to display your help so you can interact with it
just as your audience will. To display a help volume from the desktop, double–click the file
icon of the run–time help volume (volume.sdl). Or, you can also display any help topic using
the dthelpview command. Processing and Displaying a Help Volume describes both
methods.

If you are writing application help, and the Help System has been integrated into your
application, you can view your help by running the application and making help requests just
as the user will.

Programmer’s Job
As a programmer, you add code into your application so that when a user requests
context–sensitive help, the application displays help information that is relevant to what the
application is doing at that time.

Note: The/usr/dt/share/examples/dthelp directory contains source code for a sample
program called dthelpdemo. It demonstrates how to add help dialogs to an
OSF/Motif application.

Consider How Your Help Is Accessed
Providing useful information to the user requires considering the following:

• What confusing situation commonly arise? Specific help in these situations can save
users lots of time.

• Why is the user asking for help now instead of earlier or later? If there are several steps
in a process and the user is not at the first step, branch to information that is specific to
the step being done. This is more helpful than displaying the same information at each
step. If the user is at the first step, make available both detailed information about the first
step and an overview of all the steps.

• Is the user requesting context–specific help or just browsing the help information? If it is
context–specific, supply information that’s relevant to the task now being done.

13CDE Help System Author’s and Programmer’s Guide

Collaborate with the Help Author
Close collaboration with the online help author is needed because the author needs to know
how each context–specific topic is reached and the programmer needs to know what is
explained in each context–specific topic. Without such coordination, the user may see
irrelevant, ambiguous, or misleading information.

Collaboration makes the best use of the programmer’s understanding of the application and
the author’s understanding of how to best communicate relevant information to the user.

Identify Help Entry Points
An application provides online help by establishing help entry points. Entry points are
defined in the application and associated with specific help topics. Each of the ways that a
user can request help—the Help key, button, or menu—represent entry points. For example,
consider an application with a Print dialog box that has a Help button. The author writes a
help topic that describes the contents of the dialog box and supplies you with the ID of the
topic. You can then associate the ID of the help topic with the Help button using a callback
routine.

Create and Manage Help Dialogs
The Help System application program interface is designed especially for use with
OSF/Motif applications. Specifically, Help extends the OSF/Motif widget set by providing two
new widget classes (plus convenience functions to manipulate them):

• General help dialog, which provides a help window that includes a menu bar and a topic
tree, in addition to a help topic display area.

• Quick help dialog, which provides a simple help window with a topic display area and a
few dialog buttons.

You can use either or both of these types of help windows within your application. Once the
application is compiled (with the Help library), the help windows become part of the
application.

“Creating and Managing Help Dialog Boxes” describes the general help and quick help
dialog boxes.

Package and Distribute Help
Your product package includes both the run–time help file (volume.sdl) and its graphics files.
Additionally, you can provide a help family file that enables your volume to be viewed using
the Front Panel Help Viewer.

If the help volume uses execution links, you should collaborate with the author to include the
appropriate execution link resources in your application’s application defaults file.
“Preparing an Installation Package” discusses which help files are delivered with your
application.

14 CDE Help System Author’s and Programmer’s Guide

Part 2 —The Author’s Job

Organizing and Writing a Help Volume

This section describes the organization and components of a help source file. It also
provides a step–by–step example that shows how to process a help source file to create an
online help volume.

• Help Volume Components

• General Markup Guidelines

• A Help Volume at a Glance

• Help Source Files

• Help Files in File Manager

• Writing Your First Help Volume: A Step–by–Step Example

• Creating a Topic Hierarchy

• Accessing Topics

• Using Entities

Help Volume Components
A help volume has six major types of components: the home topic, topics, subtopics, entity
declarations, meta information, and the glossary.

Home Topic
The home topic is the top–level topic in the topic hierarchy. It is the first topic, or beginning of
the help volume. All other topics are subtopics. Your topic hierarchy may be several levels
deep. However, to help prevent users from getting lost, you should keep your hierarchy as
shallow as possible.

Topics and Subtopics
Topics and subtopics form a hierarchy below the home topic. Typically, the first level of
topics following the hometopic are divided into chapters, using the <chapter> element.
Within a chapter, topics are organized into sections. Subtopics of an <s1> section are
entered with <s2>, subtopics of <s2> entered as <s3>, and so on.

Either element, chapter or section, can follow the home topic. There is no visible difference
to the user if you start your hierarchy with <chapter> or <s1>. Figure shows a simple
hierarchy that includes three chapters. Each chapter contains several first–level sections.
The third chapter adds two second–level sections.

15CDE Help System Author’s and Programmer’s Guide

Help volume topic organization

Entities
An author–defined entity can represent a string of characters or a file name. An entity
declaration defines the entity name and the string or file it represents.

Entities are useful for:

• Referencing a common string of text. This is useful if there is some likelihood that the text
may change or you simply don’t want to type it repeatedly. Each place you want the text
inserted, you reference the entity name.

• Referencing an external file. Entities are required for accessing graphics files. The
<figure> and <graphic> elements have a required parameter that specifies an entity
name, which refers to a graphic image file.

All entity declarations must be entered before any other markup in your help volume. To
include an entity that you have defined, you use an entity reference. Entity references can
be used anywhere within your help volume. When you process your help volume with the
HelpTag software, each entity reference is replaced with the text or file that the entity
represents. ”Using Entities” describes how to define and use entities.

Meta Information
Meta information is information about your information. It includes information such as the
volume’s title, copyright notice, and abstract. The abstract is a brief description of the
volume’s contents.

The Help System uses the meta information to display the title of a help volume and its
copyright information. The abstract description is displayed by the desktop Help Viewer in
the Front Panel. Other applications capable of displaying help volumes could also make use
of this information.

Meta information can also include help topics that are not part of the normal topic hierarchy.
Nonhierarchical topics placed in the meta information section are accessed with links.

“Creating Meta Information Topics” shows you how to create a meta information section.

Glossary
The glossary includes definitions for terms that you’ve used throughout your help volume. If
a term is entered using the <term> element, then it automatically becomes a definition link
that, when selected, displays the glossary entry for that term.

General Markup Guidelines
Online help is written in ordinary text files. You use special codes, or tags, to markup
elements within the information. The tags form a markup language called HelpTag. If a
standard text editor is used, HelpTag markup is typed. Or, if the editor provides a macro

16 CDE Help System Author’s and Programmer’s Guide

package, tags can be stored and inserted using command keys. HelpTag markup can also
be generated using a structured editor (see “Formal Markup”).

The HelpTag markup language defines a hierarchy of elements that define high–level
elements, such as chapters, sections, and subsections, and low–level elements, such as
paragraphs, lists, and emphasized words.

Markup in Your Source Files
The markup for most elements consists of a start tag and an end tag. Start tags are entered
with the element name between angle brackets (< and >). End tags are similar, but the
element name is preceded by a \ (backslash).

<element> ... text ... <\element>

For example, to mark the start and end of a book title you use markup like this:

<book>Geographical Survey of Northern Wisconsin<\book>

Where <book> is the start tag, and <\book> is the end tag.

Shorthand Markup
Shorthand markup is a streamlined tag set designed for authors who are using a standard
text editor to “hand–tag” information. Shorthand markup provides several shortcuts. First, it
minimizes the use of end tags. For example, you do not need to enter end tags for chapters,
sections, or paragraphs. In addition, when possible, intermediate tags are automatically
assumed. For instance, the chapter and section elements allow you to omit a <head> tag;
you just type your headline.

Shorthand markup also simplifies the markup for many inline elements as well as stylistic
changes. Rather than entering a begin and end tag, vertical bars are used to delimit the text
like this:

<element| ... text ... |

For example, here’s the short form of the <book> element shown previously:

<book| Geographical Survey of Northern Wisconsin|

If the element has parameters, they’re entered before the first vertical bar like this:

<element parameters| ... text ... |

Some elements support an even shorter form where the start and end tags are replaced
with a special two–character shortcut. For example, the <emph> (emphasis) element,
whose normal syntax looks like this:

<emph> ... text ... <\emph>

can be entered using this shorthand form:

!! ... text ... !!

“Writing a Help Topic” introduces shorthand markup and gives examples of the most
frequently used elements. “HelpTag Markup Reference” provides an alphabetical list of
elements and describes each element in detail.

Formal Markup
If you intend to use formal markup, you still need to become familiar with the information
covered in Part 2 of this book. Then refer to “Reading the HelpTag Document Type
Definition” for a description of formal markup.

17CDE Help System Author’s and Programmer’s Guide

Displaying HelpTag Symbols
At times, you may need to use the < (left angle bracket), the \ (backslash), or the &
(ampersand) as text characters. To do so, precede each with an ampersand (&<, &\, or &&).

A Help Volume at a Glance
The following markup illustrates important elements of a help volume and the tags used to
enter them. This example uses shorthand markup, which omits intermediate SGML
structural tags and minimizes the number of required end tags. Indentation is used to
highlight the hierarchical relationship of the elements; you don’t need to indent the help files
that you write.

All entity declarations go here (before any other markup).

<helpvolume>
 <metainfo>
 <title> Volume Title
 <copyright>
 Copyright topic goes here ...
 <abstract>
 The abstract describing your help volume goes here.
 There may be other meta information
topics.
 .
 .
 .
 <\metainfo>

 <hometopic> Home Topic Title
 Help volume introduction goes here ...
 <s1> Title of First Topic Goes Here
 Body of the first topic goes here ...
 <s1> Title of Second Topic
 Body of the second topic goes here ...
 <s2> Title of Suptopic
 Body of the subtopic goes here ...
 .
 .
 .

 <glossary>
 The body of the glossary, which contains term definitions,
goes here ...
<\helpvolume>

Help Source Files
Online help is written in ordinary text files. You process, or compile, these files with the
HelpTag software to create run–time help files that can be read by the Help System.

Creating Your volume.htg File
HelpTag expects a primary control file named volume.htg or volume.ctg, where volume is a
name you choose. File extensions are used to distinguish whether the control file references
shorthand (.htg) or formal (.ctg) markup.

18 CDE Help System Author’s and Programmer’s Guide

Be sure your volume name is unique and meaningful. If your volume name is too general, it
may conflict with another volume that someone else has created. If you are writing
application help, one recommended practice is to use the application’s class name. For
example, the class name for the Icon Editor is Dticon, so its help volume is named
Dticon.htg.

Multiple Source Files
The volume.htg file contains entity declarations and entity references to files that make up
the help volume. Although HelpTag expects a single volume.htg file as input, you can
separate your work into multiple source files. Additional files are sourced into the volume.htg
file using file entities. A file entity is like a pointer to another file. That file, in effect, is
inserted wherever the entity’s name appears in the volume.htg file. The referenced files can
also contain entity references to yet other files. (Entities can also be used to reference text
strings.)

Example
Suppose a help volume has six chapters and each chapter is a separate file. The files are:
HomeTopic, Metainfo, TOC, Tasks, Reference, and Glossary. The volume.htg file for the
help volume includes file entities for each of the six files and a list of entity references that
instruct the HelpTag software to process the files.

<!entity HomeTopic FILE “HomeTopic”>

<!entity MetaInformation FILE “Metainfo”>
<!entity TableOfContents FILE “TOC”>
<!entity Tasks FILE “Tasks”>
<!entity Reference FILE “Reference”>
<!entity Glossary FILE “Glossary”>

&HomeTopic;
&MetaInformation;
&TableOfContents;
&Tasks;
&Reference;
&Glossary;

The details of running HelpTag are covered in “To Create a Run–Time Help Volume”.

Help Files in File Manager
File Manager represents help files as file icons with a question mark. In Figure there are two
source files (.ctg and.htg extensions) and one run–time file (.sdl extension). If you
double–click a markup file, your standard editor opens the file for editing. Double–clicking a
.sdl file displays the run–time file using the Help Viewer.

File Manager view of help files

19CDE Help System Author’s and Programmer’s Guide

To create a run–time help volume, first select the .htg or .ctg file icon in File Manager.
Then, choose Compile from the File Manager Selected menu.

See also
• dthelpaction(4) man page

Writing Your First Help Volume: A Step–by–Step Example
Typically you organize your help files in a help directory. This step–by–step example
demonstrates how to create and view a standalone help volume. (As a standalone volume, it
does not involve interaction with an application.)

To create and process a help volume, you follow these steps:

1. Create the source directory for help files.

2. Create the build directory.

3. Create the master HelpTag file.

4. Create the helptag.opt file.

5. Create the run–time help files.

6. Display the help volume.

Each task is described in the section that follows. The markup language used in the text files
is introduced later in this section. HelpTag markup is described more fully in “Writing a Help
Topic” and “HelpTag Markup Reference.”

Create the Source Directory
1. Create a directory named helpfiles where you will create and process your help files.

2. Create a text file named Commands in the directory just created.

For this example, all the information is put into a single file. Typically, you will use multiple
files to fully explain the system or application you are writing help for.

The Commands file contains text and element tags. The element tags within the < and >
(angle brackets) indicate the structure of the information.

3. Type the following markup text in the Commands file.

 <hometopic> Command Summary
 <idx|commands|

Your &product; is capable of the following operations:

<list bullet>
 * <xref ChannelChange>
 * <xref VolumeUp>
 * <xref VolumeDown>
 * <xref VolumeMute>
<\list>

Choose one of the hyperlinks (underlined phrases)
to find out how to perform that operation.

<s1 id=ChannelChange> Changing the Channel
 <idx|channel, changing|

20 CDE Help System Author’s and Programmer’s Guide

Speak the command:
<ex> channel<\ex>
followed by a number from one to ninety nine.

<s1 id=VolumeUp> Turning Up the Volume
 <idx|volume, changing|
Speak the command:
<ex> volume up<\ex>

For additional volume, speak the command:
<ex> more<\ex>

(See also <xref VolumeDown>)

<s1 id=VolumeDown> Turning Down the Volume
 <idx|volume, changing|
Speak the command:
<ex> volume down<\ex>

To further reduce the volume, speak the command:
<ex> more<\ex>

(See also <xref VolumeUp> and <xref VolumeMute>)

<s1 id=VolumeMute> Turning Off the Sound
 <idx|volume, changing|
 <idx|sound, on/off|
Speak the command:
<ex> sound off<\ex>

To restore the sound, speak the command:
<ex> sound on<\ex>

(See also <xref VolumeDown> and <xref VolumeUp>)

4. Create a text file that gives the information a title, provides copyright information, and
provides other information about the online help.

In this example, the following text is put into a file called Metainfo in the same directory
as the Commands file.

<metainfo>
 <title> Using the &product;
 <copyright>
 © 1995 Voice Activation Company. All rights reserved.
 <abstract> Help for Using the &product;.
<\metainfo>

Create the Build Directory
Create a subdirectory named build in the helpfiles directory.

21CDE Help System Author’s and Programmer’s Guide

Create the Master HelpTag File
1. In the build subdirectory, create a text file whose name is of the form volume.htg. In this

example, the file is named voiceact.htg.

2. In the .htg file, define entities that associate the names of the Commands and Metainfo
files with entity names. Also, define any entities that are used (either directly or indirectly)
in the Commands and Metainfo files. Finally, refer to the Commands and Metainfo files
by their entity names.

In this example, the contents of the voiceact.htg file look like this. The text within the
<!––…––> elements are comments, which are ignored.

<!–– Declare an entity for each of the source text files. ––>

<!entity MetaInformation FILE ”Metainfo”>
<!entity Commands FILE ”Commands”>

<!–– Define an entity that names the product and includes
 the trademark symbol (&tm;). ––>

<!entity product ”VoAc&tm; Voice–Activated Remote Control”>

<!–– Include the text files. ––>

&MetaInformation;
&Commands;

Create the helptag.opt File
1. In the build subdirectory, create a file named helptag.opt and put the following text into it.

This information selects HelpTag options and indicates where to search for any files
defined in FILE entity declarations.

onerror=go
memo
search=./
search=../

The onerror=go option instructs the HelpTag software to continue processing input files
even if an error occurred. See “Parser Options” for an explanation of parser options. For a
complete list and description of parser options, refer to the dthelptag(1) man page.

2. Verify that the /usr/dt/bin directory is in your search path by typing this command in a
terminal window:

echo $PATH

If the directory is not in your path, add it to your PATH environment variable. If you’re not
sure how to do this, refer to your system documentation or ask your system
administrator.

Create the Run–Time Help Files
1. Open File Manager and change to the build subdirectory. Select the voiceact.htg file

icon and choose Compile from the Selected menu in File Manager.

This executes the HelpTag software which creates a run–time version of your online help
volume (voiceact.sdl). Status and error messages are placed in a new file, whose
name is of the form volume.err.

2. Open the voiceact.err file to check that your file processed without errors. If errors
occurred, fix them by editing or renaming the text files as needed.

22 CDE Help System Author’s and Programmer’s Guide

Note: You can run HelpTag manually in a terminal window.

To do so, execute the following command:

dthelptag –verbose voiceact.htg

The –verbose option tells HelpTag to display its progress on your screen.

Display the Help Volume
From the build subdirectory, double–click the voiceact.sdl file icon.

This displays the help volume using the desktop Help Viewer. You can now scroll the
information and jump to related information by choosing hyperlinks.

Note: You can run the Help Viewer manually in a terminal window.

To do so, execute the following command. It displays the new help volume.

dthelpview –h voiceact.sdl

See Also
• “Processing and Displaying a Help Volume”

• “Command Summary,”

Creating a Topic Hierarchy
The topic hierarchy within your help volume begins with the home topic. Each help volume
must have one home topic. The first level of subtopics below the home topic may be entered
with <chapter> or <s1>.

Additional levels of subtopics are entered with <s2>, <s3>, and so on. The HelpTag markup
language supports nine topic levels, <s1> to <s9>. However, information more than
three or four levels deep often leads many readers to feel lost.

When a help volume is displayed, the help window displays a list of topics in its topic tree.
Any topic entered with a <chapter> or <s1...s9> tag automatically appears in the
topic tree. This provides an easy way to browse and view topics.

To enable users to display other related information from within a topic, you create
hyperlinks. To do so, you assign a unique ID to each destination topic. Hyperlinks make it
possible to reference a specific ID anywhere in your help information.

Example
Suppose you want to create a hierarchy to match this simple outline:

Tutorial for New Users
 Module 1: Getting Started
 Module 2: Creating Your First Report
 Module 3: Printing the Report
 Module 4: Saving Your Work and Quitting
Task Reference
 Starting and Stopping
 To Start the Program
 To Quit the Program
 Creating Reports
 To Create a Detailed Report
 To Create a Summary Report
Concepts for Advanced Users
 Using Report Hot Links

23CDE Help System Author’s and Programmer’s Guide

 Sharing Reports within a Workgroup
Reference
 Command Summary
 Report Attributes Summary

Then the general outline of your help volume would look like this. (The body of each topic
and IDs for the topics are not shown.)

<hometopic> Welcome to Report Master
 <chapter> Tutorial for New Users
 <s1> Module 1: Getting Started
 <s1> Module 2: Creating Your First Report
 <s1> Module 3: Printing the Report
 <s1> Module 4: Saving Your Work and Quitting
 <chapter> Task Reference
 <s1> Starting and Stopping
 <s2> To Start the Program
 <s2> To Quit the Program
 <s1> Creating Reports
 <s2> To Create a Detailed report
 <s2> To Create a Summary report
 <chapter> Concepts for Advanced Users
 <s1> Using Report Hot Links
 <s1> Sharing Reports within a Workgroup
 <chapter> Reference
 <s1> Command Summary
 <s1> Report Attributes Summary

Indentation is used here to make it easier to see the structure of the help volume. You do not
have to indent your files.

See Also
• “Accessing Topics” describes assigning IDs to topics

• “Creating Hyperlinks” describes how to create hyperlinks

To Create a Home Topic
• Use the <hometopic> element as follows:

<hometopic> Title
Body of topic.

If you include a meta information section (<metainfo>), the home topic must follow it.

Examples
Here’s a home topic with a title and a single sentence as its body:

<hometopic> Welcome to My Application

Congratulations, you’ve entered
the online help for My Application.

Here’s a sample home topic that includes hyperlinks to its four
subtopics:

<hometopic> Welcome to Report Master

Welcome to the online help for Report Master.
Choose one of the following hyperlinks:

<list bullet>

24 CDE Help System Author’s and Programmer’s Guide

 * <xref Tutorial>
 * <xref Tasks>
 * <xref Concepts>
 * <xref Reference>
<\list>
If you need help, press F1.

The preceding markup produces this output:

To Add a Topic to the Hierarchy
• To add another topic at the same level, repeat the same element.

Or, to add a subtopic (a topic one level deeper in the hierarchy), use the element that is one
level deeper than the preceding topic.

Example
If the current topic is an <s1>, enter a subtopic using <s2>.

<s1 id=getting–started> Getting Started

<s2 id=starting–the–program> Starting the Program
Here’s the body of the first subtopic.

<s2 id=stopping–the–program> Stopping the Program
Here’s the body of the second subtopic.

The second <s2> is also a subtopic of the <s1>.

Note: Sometimes a parent–child–sibling metaphor is used to describe the relationships
between topics in a hierarchy. In the preceding example, the <s1> topic is the
”parent” of both <s2>s (the ”children” topics). The two <s2>s are ”siblings” of one
another. All three topics are ”descendents” of the home topic.

Creating Meta Information Topics
The meta information section is primarily intended for information about information. Similar
to providing a copyright page in a book, this section includes information such as the volume
title, copyright, trademark, and other notices.

A secondary use of the meta information section is to enter help topics that are not part of
the normal topic hierarchy. These nonhierarchical topics are useful for creating custom
definition links that pop–up a topic in a quick help dialog box.

To Create a Meta Information Section
1. Enter the <metainfo> tag to start the section, and enter the required subelements <title>

and <copyright> as shown:

25CDE Help System Author’s and Programmer’s Guide

<metainfo>

<title> Volume Title Here

<copyright>
Body of copyright topic here.
.
.
.

2. Enter any of the optional elements as shown:

<abstract>
Body of the abstract topic here.
Do not use any HelpTag markup within the abstract!

3. Enter the <\metainfo> end tag to end the section.

.

.

.
<\metainfo>

Note: Some elements in the meta information section require a <head> tag before
the topic heading.

The <abstract> section is recommended. Applications that access help volumes can use
this information to present a brief description of the volume. Because the abstract might be
displayed in plain text windows (that do not support multiple fonts and graphic formatting),
avoid including any HelpTag markup in the abstract.

Example
Here’s a typical meta information section:

<metainfo>

 <title> Report Master, Version 1.0

 <copyright>
 <otherhead> Report Master

 <image>
 Version 1.0
 © Copyright Reports Incorporated 1995
 All rights reserved.
 <\image>

 <abstract>
 This is the online help for the mythical Report Master
 application. This help includes a self–guided tutorial,
 a summary of common tasks, general concepts, and quick
 reference summaries.

<\metainfo>

The <image> element is used to preserve the author’s line breaks. The © entity inserts
the copyright symbol.

See Also
• “To Link to a Meta Information Topic ”

26 CDE Help System Author’s and Programmer’s Guide

Adding a Nonhierarchical Topic
Topics entered with a <chapter> or <s1...s9> element tag automatically appear in
the topic tree. When a title is selected in the topic tree, the corresponding help topic is
displayed in a general help dialog box. However, sometimes you may want to create and
display a topic independent of the topic hierarchy you have created. For example, you might
want to display a topic in a separate, quick help window.

To Add a Nonhierarchical Topic
• Add the topic just before the end of your meta information section using the <otherfront>

element as follows:

<otherfront id=id><head> Topic Title
Body of topic.

The ID parameter and <head> tag are required.

You can add as many <otherfront> topics as you want. They may be in any order, but they
must be the last topics in the <metainfo> … <\metainfo> section.

Example
This partial help volume shows how a general topic is added to the meta information section.
The topic’s title is ”Pop–up!” and its ID is my–popup–topic.

<metainfo>

 <title> My Help
 <copyright>
 This is My Help, Version 1.0. © 1995.
 .
 .
 .
 <otherfront id=my–popup–topic> <head> Pop–up!

 This is a pop–up topic, displayed via a definition link
 somewhere in my help volume.
<\metainfo>

<hometopic> Welcome to My Help
 .
 .
 .

Presumably, within some other topic in the help volume, there’s a definition link to display
this topic.

The link might look like this:

Here’s a sample of a pop–up <link my–popup–topic Definition>
definition link<\link>.

The words ”definition link” become the active hyperlink and will be displayed with a dashed
underline. Selecting the link displays the ”Pop–up!” topic in a quick help dialog box.

See Also
• “Creating Hyperlinks”

• “<otherfront> ”

27CDE Help System Author’s and Programmer’s Guide

Accessing Topics
Many elements in the HelpTag language support an ID attribute. An ID is a unique name
used internally to identify topics and elements within topics. An ID is defined only once, but
multiple hyperlinks and cross–references can refer to the same ID. IDs are not seen by the
user.

If you are writing help for an application, IDs are also used by the application to identify
particular topics to display when the user requests help. For example, you might write
several topics that describe an application’s menus. The IDs that you assign to the topics
are used by the application developer. By defining identical IDs within the application code,
the developer can integrate specific topics. This allows the application to access and display
the correct topic when help is requested for a particular menu.

Rules for ID Names
• ID strings may contain letters (A – Z and a – z), digits (0 – 9), and the minus (–) sign, and

must begin with a letter.

• Author–defined IDs may not use the _ (underscore character); it is reserved for IDs that
are built into some HelpTag elements.

• Case is not significant, but is often used to increase readability.

• ID strings cannot be longer than 64 characters.

• Each ID within a single help volume must be unique.

To Add an ID to a Topic
• Use the id parameter for the element as follows:

<element id=id> ...

The elements that start a new topic and support an author–defined ID are:

• <chapter id=id>

• <otherfront id=id>

• <rsect id=id>

• <s1 id=id>

• <s2 id=id> . . .<s9 id=id>

Built–in IDs
A few elements have built–in IDs and, therefore, do not support an author–defined ID. Each
of the following elements also starts a new topic, but these elements have predefined IDs
(shown in parentheses):

<abstract> (_abstract)

<copyright> (_copyright)

<glossary> (_glossary)

<hometopic> (_hometopic)

<title> (_title)

28 CDE Help System Author’s and Programmer’s Guide

To Add an ID to an Element within a Topic
• If the element supports an author–defined ID, use the id parameter for the element as

follows:

<element id=id> ...

The elements (within a topic) that support an ID attribute are:

• <figure id=id>

• <graphic id=id>

• <image id=id>

• <location id=id>

• <p id=id>

Or, use the <location> element to set an ID at an arbitrary point within the topic as follows:

<location id=id> text <\location>

Where text is any word or phrase where you want to add an ID. The <\location> end tag is
required. When you activate a link to a location ID, the Help Viewer displays the topic
containing the ID and scrolls the window to the ID position.

Examples
If you add an ID to a figure, you must have a caption. The caption is needed in case a cross
reference is made to the figure’s ID. In that case, the caption becomes a hyperlink to the
figure.

Here’s the markup for a figure with the ID my–big–picture.

<figure id=my–big–picture entity=big–picture–TIFF>
Here’s My Figure
<\figure>

Here’s a paragraph where the phrase ”easier than ever” has been assigned the ID
easy–spot:

Getting help is <location id=easy–spot> easier than
ever<\location>.

Using Entities
An entity can represent a string of characters or the contents of a file. An entity declaration
defines the entity by associating the entity name with a specific character string or file name.
An entity reference is replaced by the string or file contents when you process the help
volume with the dthelptag command.

Entities are useful for:

• Referencing a common string of text. This is useful if there is some likelihood that the text
may change or you simply don’t want to type it repeatedly. Each place you want the text
inserted, you reference the entity name.

• Referencing an external file. Entities are required for accessing graphics files. The
<figure> and <graphic> elements have a required parameter that you use to specify an
entity name, which refers to a graphic image file.

File entities are also useful for splitting your HelpTag source into multiple files. Use entity
references to include other files into your master HelpTag file for processing.

29CDE Help System Author’s and Programmer’s Guide

Rules for Entity Declarations
• Entity names may contain letters (A – Z and a – z), digits (0 – 9), and the minus (–) sign,

and must begin with a letter.

• Case is not significant in entity names, but is often used to increase readability.

• Entity names cannot be longer than 64 characters.

• Each entity name must be unique within a single volume.

To Create a Text Entity
1. Declare an entity as follows:

<!entity Entityname ”text”>

Where Entityname is the name of the entity and text is the string that you want
substituted for every reference to the entity. Remember, all entity declarations must come
before any other markup in your help volume.

2. For each location where you want the text string to be inserted, enter the entity reference
as follows:

&Entityname;

The & (ampersand) and ;(semicolon) characters are required for the HelpTag software to
properly recognize the entity reference.

Example
The following line declares a text entity named Assoc that contains the string ”Society of
Agricultural Engineers”:

<!entity Assoc ”Society of Agricultural Engineers”>

The following sentence includes a reference to the entity:

Welcome to the &Assoc;.

When the help volume is processed with the HelpTag software, the entity reference is
replaced with the value of the entity. So, the sentence reads:

Welcome to the Society of Agricultural Engineers.

To Create a File Entity
1. Declare an entity as follows:

<!entity Entityname FILE ”filename”>

Where Entityname is the name of the entity and filename is the name of the file. The
keyword FILE is required.

2. Reference the entity as follows:

• If the file is a text file, enter the following entity reference at each location where you want
the contents of the file inserted.

&Entityname;

The & (ampersand) and ; (semicolon) characters are required for the HelpTag software to
properly recognize the entity reference.

• If the file is a graphics file, include the name of the entity as a parameter in one of the
following markup lines:

<figure entity=Entityname ... >

30 CDE Help System Author’s and Programmer’s Guide

Or:

<graphic entity=Entityname ... >

Or:

<p gentity=Entityname ... >

Note: Do not include any path in the file name. If the file is not in the current directory when
you run the HelpTag software, add the appropriate search path to the helptag.opt
file. (See “To Create a Run–Time Help Volume”.)

31CDE Help System Author’s and Programmer’s Guide

Example: Text File Entities
Suppose you wrote the text for your help volume in three files named file1, file2, and file3,
plus a fourth file containing your <metainfo> …</metainfo> section. You could include them
in your volume.htg file like this:

<!entity MetaInformation FILE ”metainfo”>

<!entity MyFirstFile FILE ”file1”>
<!entity MySecondFile FILE ”file2”>
<!entity MyThirdFile FILE ”file3”>

&MetaInformation;

<hometopic> My Home Title

Welcome to my application’s help volume.

&MyFirstFile;
&MySecondFile;
&MyThirdFile;

Example: A Graphic File Entity
Suppose a simple help volume has a figure in the home topic and the graphic image for the
figure is stored in a file named picture.tif. The following example shows how that image
would be used in a figure.

<!entity MetaInformation FILE ”metainfo”>

<!entity MyPicture FILE ”picture.tif”>

&MetaInformation;

<hometopic> A Sample Graphic

Welcome to my application’s help volume

<figure nonumber entity=MyPicture>
A Picture
<\figure>

The text ”A Picture” is the figure’s caption.

The markup produces this output:

32 CDE Help System Author’s and Programmer’s Guide

See Also
• “Displaying Graphics”

33CDE Help System Author’s and Programmer’s Guide

Writing a Help Topic

This section describes elements that you can use to format your text. It also explains how to
include graphics and how to create hyperlinks to other help topics. Examples shown in this
chapter use shorthand markup.

• Creating Structure within a Topic

• Entering Inline Elements

• Creating Hyperlinks

• Displaying Graphics

• Including Special Characters

• Including Comments and Writer’s Memos

• Creating an Index

• Creating a Glossary

Creating Help Topics
A help topic is a unit of information identified with a unique ID. Help topics are grouped into a
logical framework that best describes the product you are writing online help for.

Each topic you write should have an element (or tag) that marks the start of the topic:

<element id=id> Help Topic’s Title
The body of the topic

Where element is one of the following: chapter, s1, s2, …, s9. The body of the topic may
begin on any line after the title.

The topic’s position within the topic hierarchy is determined by the element used to start the
topic and by the element used to start the immediately preceding topic. For example, a topic
that starts with <s2> and immediately follows a topic that starts with <s1> makes the <s2>
topic a subtopic of the <s1> topic.

The id is required if the topic is to be accessed either from the application (if you are writing
application help) or from a hyperlink.

The help topic title can be any string. If the title string occupies more than one line in your
source file, end all but the last line with an & (ampersand). To force a line break at a
particular place within the title, use a \ (backslash) character.

Example
The following line marks the start of a topic using the <s1> tag:

<s1 id=welcome>Welcome to My Application

To force the title to be displayed on two lines, you use a \(backslash) like this:

<s1 id=welcome> Welcome to \ My Application

See Also
• “Organizing and Writing a Help Volume” describes the general structure of a help volume,

including how to create a topic hierarchy.

34 CDE Help System Author’s and Programmer’s Guide

Creating Structure within a Topic
Within the body of a help topic, you have the following elements to choose from to organize
and present your information:

• Paragraphs are used for bodies of text.

• Lists are used for itemized information. There are several types of lists including bulleted,
ordered (numbered), and plain.

• Subheadings are used to partition sections within a topic.

• Graphics can be included within your text as inline graphics or displayed between
paragraphs as standalone figures.

• Hyperlinks provide references to related topics. A hyperlink may lead to a subtopic,
deeper in the hierarchy, or branch to a topic in a completely different part of the hierarchy,
or even in another help volume.

• Computer literals are computer–recognized text, such as file names and variable names,
that can be displayed as either separate example listings or inline elements.

• Notes, cautions, and warnings call the reader’s attention to important information.

• Emphasis is used to highlight important words and phrases within paragraph text.

To Start a Paragraph
• Insert a blank line after the previous paragraph or other element.

Or, use the <p indent> element and parameter if the paragraph is to be indented.

Or, use the <image> element if you want the paragraph to maintain the line breaks that you
enter in your source file.

An end tag for <p> is not required. However, the <\image> end tag is required with the
<image> element.

Examples
Here are two paragraphs, separated by a blank line. Because neither paragraph has any
special parameters, the <p> tag does not have to be entered (it is assumed when you enter
one or more blank lines):

The Application Builder provides an interactive, graphical
environment that facilitates the development of desktop
applications.

The Application Builder is designed to make it easier for
developers to construct applications that integrate well into the
desktop. It provides two basic services: assembles Motif objects
into the desired application user interface, and generates
appropriate calls to the routines that support desktop
integration services.

If you want a paragraph indented from the left margin, include the optional indent parameter:

<p indent> An indented paragraph can be used to draw the reader’s
attention to an idea.

35CDE Help System Author’s and Programmer’s Guide

The following paragraph overrides the automatic word wrap in help windows and maintains
the line breaks exactly as entered in the source file. The <image> element is especially
useful for entering addresses.

<image>

Brown and Reed Financial Investors

100 Baltic Place Suite 40 New York, New York

<\image>

To Enter a List
Use the <list> element as shown:

<list type spacing>
* item
* item
 .
 .
 .
* item
<\list>

Where type indicates the type of list you want: bullet (default), order, or plain; and spacing is
loose (default) or tight. Each item in the list is marked with an * (asterisk).

Examples
Here’s a simple list. Because the type isn’t specified, it defaults to a bulleted list. Because
spacing isn’t specified, it defaults to loose, which leaves a blank line between each item.

<list>

* Creating a Mail Message

* Sending a Message

* Reading Your Mail

<\list>

The online format of the preceding markup is shown in Figure:

To format the same list with numbers and reduced spacing between items, use:

<list order tight>

* Creating a Mail Message

* Sending a Message

* Reading Your Mail

<\list>

The output is shown in Figure:

36 CDE Help System Author’s and Programmer’s Guide

To Enter a Lablist
A lablist is a two column list with optional column headings.

To create a labeled list without headings, use the <lablist> element as shown:

<lablist spacing>
 \ label 1\ item 1 text
 \ label 2\ item 2 text
 .
 .
 .
 \ label N\ item N text
<\lablist>

Where spacing is loose (default) or tight.

Example
Here’s a list of labeled chapter descriptions. The optional label headings are not provided.

<lablist tight>

\Chapter 1\ An Overview of the System

\Chapter 2\ Installing the Operating System

\Chapter 3\ Configuring the Desktop

\Appendix A\ System Commands Quick Reference

<\lablist>

The output is shown in Figure:

To Enter a Lablist with Headings
Use the <lablist> and <labheads> elements as shown:

<lablist spacing>

 <labheads> \ heading for labels \ heading for items

 \ label 1\ item 1 text
 \ label 2\ item 2 text

 .
 .
 .

37CDE Help System Author’s and Programmer’s Guide

 \ label N\ item N text
<\lablist>

Example
This markup:

<lablist>

<labheads>\Key \Action

\Previous\ Scroll to previous page

\Next\ Scroll to next page

\First\ Go to first page in document

\Last\ Go to last page in document

<\lablist>

produces this output:

See Also
• “<list> ” summarizes the use of the <list> element.

• “<lablist> ” summarizes the use of the <lablist>.

To Provide Subheadings within a Topic
For medium headings (slightly smaller than the topic title), use the following markup:

 <otherhead> Heading

Or, for small headings, use the following markup:

 <procedure> Heading

Subheadings add structure within a topic, but they do not appear in the list of topics in the
topic tree.

Example
Here, the <procedure> element is used to add a small heading before each list.

<procedure>Keyboard

<list order>

* Use the Tab and direction keys to move the highlight to the
icon you want to select.

* Press Return or Spacebar.

<\list>

<procedure>Mouse

38 CDE Help System Author’s and Programmer’s Guide

<list bullet>

* Click the icon.

<\list>

This markup creates this output:

To Show a Computer Listing
For computer listings that do not contain any special character sequences that will be
interpreted as HelpTag markup, use the <ex> (example) element as shown:

<ex size>

Computer text here.

<\ex>

For computer listings that contain special character sequences used by HelpTag, use the
<vex> (verbatim example) element as shown:

<vex size>

Computer text here.

<\vex>

The optional size attribute, which determines the size of the font used to display the
example, can be specified as smaller or smallest.

Example
Here the <ex> element is used to represent a directory listing in a terminal window.

In this tutorial, you will edit these graphics files:

<ex>

H_ActionIcons.xwd H_HelpWindows.xwd

H_AppHelp.xwd H_Hyperlinks.xwd

H_Canonical.xwd H_Icons.xwd

H_FrontPanel.xwd H_InlineGraphic.xwd

<\ex>

The markup produces this output:

39CDE Help System Author’s and Programmer’s Guide

Line breaks appear where you enter them in your source file. If the example is too wide for
the help window, a horizontal scroll bar appears so the user can scroll to see all the example
text.

See Also
• “To Display a Computer Literal ”

• “<ex> ”

• “<vex> ”

To Add a Note, Caution, or Warning
Include the <note>, <caution>, or <warning> element as follows:

<note>
Body of note here.
<\note>

<caution>
Body of caution here.
<\caution>

<warning>
Body of warning here.
<\warning>

To associate an icon with the note, caution, or warning element, define a file entity that
identifies the graphics file containing the icon. Use one of the predefined entity names:

• <!ENTITY NoteElementDefaultIconFile FILE ”filename”>

• <!ENTITY CautionElementDefaultIconFile FILE ”filename”>

• <!ENTITY WarningElementDefaultIconFile FILE ”filename”>

If you do not want icons with notes, cautions, or warnings, don’t declare the corresponding
entities. (Remember, all entity declarations must come before any other markup at the
beginning of your help volume.) If you include such an entity reference, be sure the graphics
file is in your HelpTag search path (helptag.opt).

Names of the default icons used by the Help System for note, caution, and warning
elements are specified in the following entities.

• <!ENTITY NoteElementDefaultIconFile FILE ”noteicon.pm”>

• <!ENTITY CautionElementDefaultIconFile FILE ”cauticon.pm”>

• <!ENTITY WarningElementDefaultIconFile FILE ”warnicon.pm”>

These default icons are located in the /usr/dt/dthelp/dthelptag/icons directory.

40 CDE Help System Author’s and Programmer’s Guide

If you create your own icon images for notes, cautions, and warnings, be sure to keep them
small so they will fit into the area allotted. Also, the graphic images must be in your HelpTag
search path, which is specified in your helptag.opt file.

Example
The following markup for a note, warning, and caution produces the output shown in Figure .

<note>

Before installing your application, complete the options
checklist to determine the amount of disk space required.
<\note>

<warning>

This product is highly acidic and can cause skin irritation.
Wearing protective gloves is mandatory when applying this
product.
<\warning>

<caution>
 Do not place your fingers near the parrot cage!
<\caution>

Note, warning, and caution help icons

See Also
• “To Create a Run–Time Help Volume” describes using a helptag.opt file.

• “ Using Entities”

Entering Inline Elements
Inline elements are used to mark words or phrases within a paragraph of text. These
elements affect the font used to format particular items.

To Emphasize a Word or Phrase
Use the <emph> element (emphasis) as shown:

<emph> text <\emph>

Or, use the shorthand form:

41CDE Help System Author’s and Programmer’s Guide

!! text !!

Emphasized text is displayed using an italic font.

Example
Here’s how you might emphasize an important word:

A thousand times <emph>no<\emph>

Or, using the shorthand form:

A thousand times !!no!!

In both cases, the word ”no” is displayed in italics.

To Enter a Book Title
Use the <book> element as shown:

 <book> title <\book>

Or, use the short form:

 book| title |

Book titles are displayed using an italic font.

Example
Here’s how you would enter the title of this guide:

<book|The Help System Author’s and Programmer’s Guide|

To Emphasize Using a Bold Font
Use the <term> element as shown:

<term nogloss> bold text <\term>

Or, use the shorthand form:

<term nogloss | bold text |

The <term> element is used to create a glossary entry. However, by adding the nogloss
parameter, the text is displayed in a bold font without being added to the glossary.

To Display a Computer Literal
Use the <computer> element as shown:

 <computer> text <\computer>

Or, use the shorthand form:

 ‘‘ text ’’

Example
Computer text is useful for identifying a file name. Here the helptag.opt file name is tagged
using shorthand markup. The file name will be displayed in computer text.

This markup:

Add the search path to your “helptag.opt” file.

produces this output:

Add the search path to your helptag.opt file.

42 CDE Help System Author’s and Programmer’s Guide

To Display a Variable
Use the <var> element (variable) as shown:

<var> text <\var>

Or, use the short form:

<var |text |

Or, use the shorthand form:

%% text %%

Variables are displayed using an italic font.

Example
This command–line syntax uses a variable to show that the user supplies a file name.

dtpad %%filename%%

It produces this output:

dtpad filename

Variables can appear within computer text or computer example listings. This example
specifies volume as a variable part of a file name:

The HelpTag software takes your “%%volume%%.htg” file as input.

It produces:

The HelpTag software takes your volume.htg file as input.

In both of these examples, the %% pairs could have been entered with the long form
(<var>…<\var>) or the short form (<var|…|).

Creating Hyperlinks
A hyperlink references a specific topic or location in a help volume. This requires that the
element you want to reference is given a unique ID. These HelpTag elements can be
assigned IDs: <chapter>, <s1...s9>, <location>, <p>, <image>, <figure>,
and <graphic>.

Help supports five types of hyperlinks:

• Hypertext links ”jump” to another help topic. By default the new topic is displayed in the
same window, but you may request that the new topic be displayed in a new window.

• Definition links display a topic in a simple pop–up help window. Most frequently, definition
links are used to access the definition of a new term or phrase used within a sentence.

• Man page links display any man page installed on the system.

• Execution links execute a shell command or program. This greatly expands the
possibilities for what happens when the user activates a hyperlink.

• Application–defined links create custom links that the application interprets. This provides
facilities for communication between the Help System and the application.

To create a hyperlink to an element, you include its ID in a hyperlink command. HelpTag
provides two elements, <xref> and <link>, that can be used to create hyperlinks to an
ID. In addition, the <p>, <image>, and <figure> elements can be used to create hyperlinks
using a graphic image.

43CDE Help System Author’s and Programmer’s Guide

Using the <xref> Element
If you are linking to an element with a title, such as a chapter or section, the simplest way to
do so is with the <xref> element. When you use < xref> to create a link, you specify
the ID of the topic that you want to link to. The title of the topic is inserted in place of the
<xref> element and becomes the active hyperlink.

Hypertext links created with <xref> display the new topic in the same window. If you desire
different behavior by using the other link types, then you must use the <link> element.

Also, you cannot use <xref> to jump to topics that have built–in IDs (such as <hometopic>
or <glossary>). To create a hyperlink to any of those elements, you must use the <link>
element.

To Create a Link Using <xref>
Use the <xref> element as shown:

 <xref id>

where id is the ID of the chapter or section that you want to create a link to. Notice that
capitalization of the ID is not significant.

Here’s an example that creates a link to a section title.

<s1 id=colorpalettes>Desktop Color Palettes

.

.

.
To learn how to change the colors used on your desktop,
refer to <xref colorpalettes>.

The section title replaces the <xref> element. The title is a hyperlink, designated by an
underline. This Figure shows how the sentence would appear in a help volume.

Using the Link Element
You can use either the <xref> or <link> element to create standard hypertext links.
However, to use the other types of links , you must use the <link> element.

To Create a Link Using <link>
To jump to a topic within the same volume, use the <link> element as shown:

<l ink id>text<\link>

Where id is an ID declared somewhere in the help volume, and text is the portion of your
help text that is underlined to indicate it is an active hyperlink.

44 CDE Help System Author’s and Programmer’s Guide

Example
Here is the previous example using the <link> element instead of the <xref>
element.

<s1 id=colorpalettes>Desktop Color Palettes

.

.

.
To learn how to change the colors used on your desktop,
refer to <link colorpalettes>Desktop Color Palettes<\link>.

To Create a Link to a Predefined ID
To jump to a topic (within the same volume) that has a predefined ID, use the <link> element
as shown:

<link hyperlink=”id”>text<\link>

All the predefined IDs start with a _ (underscore) character. So this makes it necessary to
use the hyperlink= ”id” form.

Example
This link jumps to the home topic of the current volume:

Return to <link hyperlink=”_hometopic”>Introduction<\link>.

To Create a Link to a Topic in a Different Volume
To jump to a topic in another help volume:

<link hyperlink=”volume id” JumpNewView>text<\link>

If the other volume is registered, the volume parameter is just the base name of the volume
file. If the volume is not registered, you must include a complete path name to the volume.

The JumpNewView parameter is recommended for links to other volumes so that users
realize they have jumped into another volume. The previous view remains displayed so they
can see where they came from.

45CDE Help System Author’s and Programmer’s Guide

Examples
This link jumps to the home topic of a help volume called GeoMap:

To view a map of the United States, see <link hyperlink=”GeoMap
_hometopic”> Geography Maps <\link>.

Here’s the same link, but it displays the topic in a new window:

To view a map of the United States, see <link hyperlink=”GeoMap
_hometopic” type=JumpNewView> Geography Maps <\link>.

This link jumps to the topic, DesktopKeyboardNav, in the help volume named
Intromgr.

For more information, see <link hyperlink=”Intromgr
DesktopKeyboardNav”>Keyboard Shortcuts for the Desktop<\link>.

If the help volume you are targeting is not registered on the desktop, then you must provide
a complete path name to the volume or specify the appropriate search path in your
helptag.opt file.

See Also
• “Registering Your Application and Its Help”

• “<figure> ”

• “<image> ”

• “<link> ”

• “<p> ”

• “<xref> ”

To Create a Definition Link
 If you are linking to a term in the glossary, use the <term> element as shown:

<term>text<\term>

Or, use the shorthand form:

++text++

Whenever you use the <term> element, be sure you include the corresponding definition in
the Glossary.

If you are linking to a topic within the same help volume, use the <link> element as shown:

<link id Definition>text<\link>

Where id is a topic ID (or the ID of an element within the topic) and text is the portion of your
help text that you want to be the active hyperlink. The Definition keyword specifies that the
link should pop–up a quick help dialog box.

Or, if you are linking to a topic in another help volume, use the <link> element as shown:

<link hyperlink=”volume id” Definition>text<\link>

If the other volume is registered, the volume parameter is just the base name of the volume
file. If the volume is not registered, you must include a complete path name to the volume.

Example
The following link creates a definition link that displays the copyright topic in the meta
information:

46 CDE Help System Author’s and Programmer’s Guide

<link hyperlink=”_copyright” type=Definition>Version
Information<\link>

The phrase ”Version Information” becomes the hyperlink text (dashed underline).

See Also
• “ Creating a Glossary”

• “<term> ”

• “<link> ”

To Create a Man Page Link
Use the <link> element as shown:

<link manpage Man>text<\link>

To request a man page from a particular section, use the hyperlink parameter like this:

<link hyperlink=”section manpage” Man>text<\link>

For man page links, the hyperlink parameter is the same string you would enter if executing
the man command in a terminal emulator window.

Note: If you are writing help for an application and you include any man page links, your
application must include special support for man pages. See “To Display a Man
Page” . (The desktop Help Viewer includes support for man page links.)

Example
Here’s a link that displays the man page for the grep command:

Refer to the <link grep Man> grep(1)<\link> command.

”Man” is a keyword for the <link> element, so if you want to create a link that displays the
man page for the man command, you must use the hyperlink parameter:

Refer to the <link hyperlink=”man” Man>man(1)<\link> command.

To display a man page in a particular section, precede the man page name with the section
number. The following link displays the ”mkdir” man page from section 2 (which is different
from the man page of the same name in section 1):

Refer to the <link hyperlink= ”2 mkdir” Man>mkdir(2)<\link>
command.

See Also
• “<link> ”

To Create an Application–Defined Link
Use the <link> element with the AppDefined parameter as shown:

<link hyperlink=”data” AppDefined>text<\link>

Where data is a text string passed to the application when the link is invoked and text is the
hyperlink.

Example
Suppose you are writing help for an application that prints three styles of reports. You might
create three hyperlinks like this:

Choose a report type:

47CDE Help System Author’s and Programmer’s Guide

<list plain tight>

* <link hyperlink=”Report–Daily” AppDefined>Daily Report<\link>

* <link hyperlink=”Report–Month–To–Date” AppDefined>MTD
Report<\link>

* <link hyperlink=”Report–Year–To–Date” AppDefined>YTD
Report<\link>

<\list>

If your application is set up to handle these special links and to interpret the hyperlink
strings, it could generate the appropriate report based on the hyperlink chosen by the user.

For a complete example, refer to the sample application code located in the
/usr/dt/share/examples/dthelp directory.

To Link to a Meta Information Topic
Use the <link> element as shown:

<link hyperlink=”_id”>text<\link>

Where id is the predefined ID associated with the element you want to link to and text is the
word or phrase that you want to be the active hyperlink.

Most topics within the meta information section have predefined IDs, so they do not allow
author–defined IDs. The predefined IDs consist of the element name preceded by an
underscore character. For example, the ID for the <copyright> topic is _copyright. (Case is
not significant.)

The predefined IDs for the meta information topics are listed below:

<abstract> (_abstract)

<copyright> (_copyright)

<title> (_title)

Topics entered with the <otherfront> element can be linked to just like any normal topic in
the topic hierarchy.

See Also
• “Built–in IDs” lists the Help System predefined IDs.

Execution Link Control
Most hyperlinks display a related help topic, but hyperlinks can also execute shell
commands and scripts. Links of this type are called execution links. Because execution links
interact with a user’s system, the Help System provides an execution policy to control how
execution links are handled.

The Help System uses resources to define the behavior of execution links. The
DtNexecutionPolicy resource is set in an application’s application defaults file to modify
how execution links are handled by the Help System. In addition the Help System uses a set
of resources called execution aliases. An execution alias is a resource that assigns a name
(or label) to the command string or script that an execution link executes.

Execution Policy Default Behavior
When an execution link is selected, if the link has an execution alias, the Help System
retrieves the value of the alias and executes the command. If an execution alias has not

48 CDE Help System Author’s and Programmer’s Guide

been defined, the Help System displays a confirmation dialog box that shows the command
to be executed and asks the user whether to execute the command or to cancel the
operation.

Execution Aliases
In the application’s application defaults file you define an alias (a name) that represents the
actual command to be executed. This makes it possible to edit the commands in the
application defaults file without changing the hyperlinks in the help volume. Each hyperlink
references an alias name, which remains unchanged even though its content may have
been edited.

To Create an Execution Alias
To create an execution alias in an application’s application defaults file, use this resource
specification syntax:

application_name.executionAlias.alias_name: command

Where:

application_name Name or class name of the application that owns the help volume

executionAlias Keyword that identifies the resource is an alias

alias_name Name assigned to the command

command Shell command or script to be executed for this link

There is no restriction on the length of the command string. To enter commands with
multiple lines, end each line (except the last) with a \ (backslash).

Examples
This resource entry creates an execution alias named, StartDtterm, which starts a
terminal emulator. The & (ampersand) starts the command in the background.

Dtterm.executionAlias.StartDtterm: dtterm &

This entry creates an alias named, xclockAlias, that executes the xclock application
in an application named NightAlert.

NightAlert.executionAlias.xclockAlias: xclock &

Using Execution Aliases in Hyperlinks
An execution alias can be referenced using the <link> element or used in conjunction with
elements that have a hyperlink parameter, such as <p> or <figure>.

To Create an Execution Link Using an Execution Alias
Use the <link> element as shown:

<link “DtHelpExecAlias alias_name [default_command]” Execute
>text<\link>

Where:

DtHelpExecAlias Keyword that identifies this link has an execution alias

alias_name Name defined as an alias in the execution alias resource
specification

default_command Optional. If provided, this command is executed when an execution
alias has not been loaded from an application’s application defaults

49CDE Help System Author’s and Programmer’s Guide

file. For example, application resources are not loaded when a help
volume is displayed from an information viewer, such as Help View.

text The portion of your help text that you want to designate as the
hyperlink text (underlined)

Note: If the command you are executing doesn’t finish immediately, run it in the
background by appending an &(ampersand) to the command. If you don’t, the help
window will not operate until the command finishes.

Examples
This hyperlink references the execution alias named, xclockAlias. The resource
definition for the alias is shown in the section see “Execution Aliases”.

The link starts the xclock program running in the background. The phrase ”Start the Clock”
becomes the hyperlink. Clicking the hyperlink runs the xclock program in a separate
window. To end the program, close the window.

<link “DtHelpExecAlias xclockAlias” Execute>Start the
Clock<\link>

Here is the same hyperlink including an optional default command.

<link “DtHelpExecAlias xclockAlias xclock &” Execute>Start the
Clock<\link>

DtNexecutionPolicy Resource
The DtNexecutionPolicy resource enables a system administrator or user to select an
appropriate level of security for a given application.

The resource values that can be set are:

help_execute_query_all
Query all execution links.

help_execute_query_unaliased
Query only link commands from untrusted help volumes that do not have
execution aliases defined. (Trusted help volumes are those that are shipped
with the Common Desktop Environment or owned by the root user.)

help_execute_none
Do not execute any execution links.

help_execute_all
Execute all execution links.

The default value is help_execute_query_unaliased. Any execution links defined as
execution aliases will be automatically executed, whereas the Help System will display a
confirmation dialog box for any other execution links.

It is not recommended for the application developer to set the DtNexecutionPolicy
because this prevents a system administrator or user from altering the value.

See Also
• “<link> ”

• “<figure> ”

• “<p> ”

• DtHelpDialog(3)

• DtHelpQuickDialog(3)

50 CDE Help System Author’s and Programmer’s Guide

Displaying Graphics
Help supports four graphics formats:

• Tagged Image File Format (TIFF)—Color, grayscale, and black–and–white images
created by many standard drawing and scanning applications (filename.tif).

• X Window dump—Screen dumps from the X Window System created with the xwd
utility (filename.xwd).

• X pixmap—Color icon images (filename.pm).

• X bitmap—Two–color icon images (filename.bm).

Each graphic is maintained as a separate file. The file format is determined using the file
name extensions listed.

To Create a Figure
1. Declare a file entity to identify the image file to be included in the figure.

<!entity graphic–entity FILE ”filename.ext”>

Remember, all entity declarations must come before any other markup at the top of your
help volume.

2. Use the <figure>element as shown:

<figure entity=graphic–entity>
caption string
<\figure>

Where graphic–entity is the entity name for the graphic file you want to display, and
caption string is an optional string. Caption text is displayed above the graphic.

By default, figures are numbered and the number is prepended to your caption string. To
create a nonnumbered figure, include the nonumber parameter (as shown in one of the
following examples).

If you want the figure to be a hyperlink, use the ghyperlink (graphic hyperlink) and
glinktype (graphic link type) parameters as shown:

<figure entity=graphic–entity ghyperlink=”id” glinktype=type>
caption string
<\figure>

The ghyperlink and glinktype parameters work just like the hyperlink and type
parameters for the <link> element.

Examples
For these examples, assume that you’ve declared these two file entities at the top of your
help volume:

<!entity FirstPicture FILE ”first.tif”>
<!entity SecondPicture FILE ”second.pm”>

• The following figure displays the graphic in the first.tif file and displays a number (by
default) and caption:

<figure entity=FirstPicture>
Here’s the First Picture
<\figure>

• Here’s a figure that displays the second.pm file without a number or a caption:

51CDE Help System Author’s and Programmer’s Guide

<figure nonumber entity=SecondPicture>
<\figure>

If you add an ID to a figure, you must have a caption. The caption is needed in case an
<xref> uses the figure’s ID; if so, the caption is inserted in place of the <xref> and
becomes a hyperlink to the figure.

• The following figure is an execution hyperlink that runs the xclock program:

<figure entity=SecondPicture ghyperlink=”xclock &”
glinktype=execute>
Choose This Figure to Start the Clock
<\figure>

See Also
• “<figure> ”

• “<link> ”

To Display an Inline Graphic
1. Declare a file entity to identify the image file to be used in the figure.

<!entity graphic–entity FILE ”filename.ext”>

Remember, all entity declarations must come before any other markup at the top of your
help volume.

2. Use the <graphic> element as shown:

... text <graphic entity=graphic–entity> text ...

Where graphic–entity is the entity name for the graphic file you want to display.

To use a graphic as a hyperlink, place it inside a <link> element:

<link parameters><graphic entity=graphic–entity><\link>

Note: The <graphic> element is intended for small graphics, although larger images can be
used. Additional white space is added between lines to accommodate the height of
the graphic.

Example
Here’s an example that uses a small X bitmap image in the middle of a sentence. First, at
the top of the volume, the bitmap file must be declared as a file entity:

<!entity StopWatch FILE ”stopwatch.bm”>

Within the help text, the image is inserted using the <graphic> element:

Whenever you see the <graphic entity=StopWatch> symbol, stop and
answer the quiz questions.

This markup produces this output.

To Wrap Text around a Graphic
1. Declare a file entity to identify the image file to be included with the paragraph.

52 CDE Help System Author’s and Programmer’s Guide

<!entity graphic–entity FILE ”filename.ext”>

2. Use the <p> element (paragraph) with the gentity parameter as shown:

<p gentity=graphic–entity> Paragraph text here ...

Where graphic–entity is an entity name that refers to the graphic file you want inserted.

Example
Suppose you want to display an icon named sample.pm and wrap paragraph text around it.
First, declare the file entity:

<!entity HelpKeyIcon FILE ”helpkey.xwd”>

Then, enter the paragraph:

<p gentity=HelpKeyIcon gposition=left> The F1 key is a Help key.
When you press F1, the application you are using displays the
help topic most closely related to your current activity.

To right–justify the graphic, add the gposition parameter like this:

<p gentity=HelpKeyIcon gposition=right>Many desktop components
support multicolor icons, in addition to two–color images.

Here’s the markup for a paragraph wrapped around an icon, where the icon is a hyperlink
that displays a topic with the ID icon–editor in a new window:

<p gentity=my–icon ghyperlink=”icon–editor”
glinktype=JumpNewView> Many desktop components support multicolor
icons, in addition to the two–color images.

See Also
• “ <p> ”

Including Special Characters
Many special characters and symbols are available within HelpTag. You display a particular
character by entering the appropriate entity reference.

Some special character entities are declared in the file helpchar.ent. The helpchar.ent file is
located in the /usr/dt/dthelp/dthelptag directory. To access these characters, either copy the
particular entity declaration into your own volume, or include the entire helpchar.ent file.
Unused entity declarations are ignored.

Refer to “Summary of Special Character Entities” for a complete list of the available
characters.

To Include a Special Character
1. Refer to “Summary of Special Character Entities” to determine the entity name for the

character you want to display. Also, note whether it is a built–in special character.

2. If the character is not a built–in special character, add the following two lines among your
other entity declarations (where entity–name is a meaningful name to you):

53CDE Help System Author’s and Programmer’s Guide

<!entity entity–name FILE ”helpchar.ent”> &entity–name;
&entity–name;

Also, add this line to your helptag.opt file:

search=/usr/dt/dthelp/dthelptag

If the character is built into HelpTag, you can skip step 2.

3. Wherever you want to display the special character, enter its entity reference:

&entity–name;

Examples
The entity for the copyright symbol () is a built–in special character, so all you have to do
to display it is use this entity:

©

To display the uppercase greek letter sigma (Â), you must first include the helpchar.ent file
(at the top of your help volume with your other entity declarations) as shown here:

<!entity SpecialCharacterEntities FILE ”helpchar.ent”>
&SpecialCharacterEntities;

Then you can place the following entity reference where the sigma character is to appear:

&Usigma;

As with any entity, case is not significant in the entity names for special characters.

See Also
• “Summary of Special Character Entities”

Including Comments and Writer’s Memos
Frequently it is useful to include within your source files comments that are not intended to
be part of the help text. Text marked with the comment element is always ignored by the
HelpTag software. Comments can be used to make notes to yourself or to another author, or
to exclude some markup without taking it out of the file.

In addition to standard comments, HelpTag also provides a <memo> element for entering
writer’s memos. Memo notes appear in your help topics during reviews, but not when you
make your final help files. Authors commonly use the <memo> element to write questions or
make notes to reviewers.

To Insert a Comment
Use the comment begin marker (<!––) and end marker (––>) as shown:

<!–– text here is completely ignored ––>

The HelpTag software ignores all markup between the <!–– and ––>. A comment cannot be
nested within another comment.

Example
Here’s an example that has two comments, a line before the paragraph, and a single word
within the paragraph.

<!–– Here is my rough draft of the introduction: ––>

Welcome to my application. This software

54 CDE Help System Author’s and Programmer’s Guide

is <!–– perhaps ––> the fastest and most
efficient software you’ll ever own.

To Insert a Writer’s Memo
Use the <memo> element as shown:

<memo> text <\memo>

By default, the text within the <memo> element is ignored by the HelpTag software (just like
a comment). However, if you add the memo option to your helptag.opt file (or specify the
memo option with the dthelptag command), all memos within your help volume appear in a
bold font.

Example
Suppose you are writing about your application and have a question for the project team.
You can include the question within the text using the <memo> element like this:

<memo>Team: Will the product also
support 32–bit characters?<\memo>

If you process the help volume with the following command (or include memo in your
helptag.opt file), the memo appears in the help text in a bold font.

dthelptag volume memo

If the memo option is not used (or the nomemo option is used), the text within the memo is
ignored and does not appear in the help text.

Creating an Index
The index for a help volume is similar to the index for a book. As an author, it is important to
create index entries for your topics that will allow users to search for keywords or concepts.
Creating a thorough index ensures that users will be able to find topics quickly and
accurately.

To Mark an Index Entry
 Within the topic you want to index, use the <idx> element as shown:

<idx>keyword<\idx>

Or, the short form:

 <idx|keyword|

Or, to control how the entry is sorted, use the <sort> subelement as shown:

<idx>keyword<sort>sortkey<\idx>

Where keyword is the text you want to display in the index and sortkey is the text used
during sorting.

The <idx> element can be used anywhere within the topic. Neither the keyword nor the
optional sortkey are displayed in the topic.

Examples
Here’s the start of a topic with two keyword index entries:

<s1 id=getting–started>Getting Started with Helpview

<idx>starting Helpview<\idx>
<idx> Helpview, starting<\idx>

55CDE Help System Author’s and Programmer’s Guide

Welcome ...
.
.
.

The following example indexes the + (plus character), putting it in the keyword index where
the word ”plus” would appear:

<idx>+<sort>plus<\idx>

Creating a Glossary
Like a glossary in a book, your help volume can contain a glossary that defines important
terms. The glossary, which is marked using the <glossary> element, is the last topic in your
help volume.

Throughout your help volume, each key word or phrase that you enter with the <term>
element automatically becomes a definition hyperlink to the term’s definition in the glossary.

See Also
• “<dterm>”

• “<glossary> ”

• “<term> ”

To Mark a Glossary Term
Use the <term> element as shown:

<term>word or phrase<\term>

Or, use the short form:

<term|word or phrase|

Or, use the shorthand form:

++word or phrase++

If the term within the help text isn’t spelled exactly the same as the definition in the glossary,
you can specify the ”glossary form” of the term like this:

<term ”glossary form”>word or phrase<\term>

Where glossary form is the term exactly as it appears in the glossary. This is useful if the
term must be plural in a help topic (because of its context), but must be singular in the
glossary.

Terms are displayed using a bold font and automatically become a definition hyperlink.
When the term is chosen, its glossary definition appears in a quick help dialog.

Note: If you mark a term that you intentionally do not define in the glossary, add the
nogloss attribute to the <term> element. This allows the term to be displayed in the
bold font used for terms, but without creating a link to the glossary.

Examples
If your glossary has a definition for the term ”widget”, you can enter it as a term like this:

A ++widget++ is the fundamental building block of OSF/Motif user
interfaces.

56 CDE Help System Author’s and Programmer’s Guide

If the glossary entry is ”widget”, but you need to use the plural form within the sentence, you
could enter the term like this:

<term ”widget”>Widgets<\term> are the fundamental building
blocks of OSF/Motif user interfaces.

If you want to enter the same term, but you either don’t want to include it in the glossary or
you don’t want it to be a hyperlink, use the nogloss parameter like this:

<term nogloss> Widgets<\term>are the fundamental building blocks
of OSF/Motif user interfaces.

The equivalent short form is:

<term nogloss|Widgets| are the fundamental building blocks of
OSF/Motif user interfaces.

To Define a Term in the Glossary
Enter the <dterm> element into the glossary as shown:

<glossary>
.
.
.
<dterm>word or phrase
Definition of the term
.
.
.

Be sure to keep the <dterm>words and phrases sorted within the glossary.

Example
Here’s part of a glossary that includes the definition of the term SGML:

<glossary>

.

.

.
<dterm>SGML
Standard Generalized Markup Language. An
international standard [ISO 8859: 1986] that
establishes a method for information interchange.
SGML describes constructs for marking the
structure of information separate from its
intended presentation or format.

57CDE Help System Author’s and Programmer’s Guide

Processing and Displaying a Help Volume

This section shows you how to process your marked–up help files to create an online format
that you view using the Help System. It also describes how to make your help volume
accessible from the desktop Front Panel Help Viewer.

• Creating Run–Time Help Files

• To Create a Run–Time Help Volume

• Viewing a Help Volume

• To Display a Help Volume

• Adding Your Help to the Browser Volume

• Printing Help Topics

• Testing Your Help

Overview
Before a help volume can be displayed, you must create a run–time help file by processing
your files with the HelpTag software. Run–time files use an online presentation format called
Semantic Delivery Language. A.sdl file extension identifies a run–time help file. This is
outlined in the following Figure.

The Help System defines desktop actions and data types for help–specific files. This lets
you easily process and view a run–time help file from the desktop.

HelpTag Software
The HelpTag software can be invoked automatically by double–clicking a help source file in
File Manager or by running the dthelptag command manually in a terminal window.

Helptag does two significant tasks:

1. The HelpTag parser converts your marked–up files into an internal format (Semantic
Delivery Language) understood by the Help System. If you’ve made any markup errors,
the errors are reported in a file named volume.err.

2. If there are no parser errors, the master help volume file (volume.sdl) is created.

 Viewing Your Volume
After processing your source files with HelpTag, your help volume is ready to be displayed.
You can display it by double–clicking the volume.sdl file icon in File Manager, or use the
dthelpview command in a terminal window. See Figure.

58 CDE Help System Author’s and Programmer’s Guide

If you have written help for an application and the application is ready to use, you can
display your help by running the application and asking for help.

Creating Run–Time Help Files
When you run HelpTag, it reads your volume.htg or volume.ctg file and any additional
source files that are included using entities. Also, graphics file names are validated.

Be sure the /usr/dt/bin/dthelptag command is in your search path. (If you’re not sure how to
do this, ask your system administrator.)

To Create a Run–Time Help Volume
1. Open File Manager and change to the directory where your volume.htg file is located.

This Figure will be displayed.

2. Select the file icon.

3. Choose Compile from the File Manager Selected menu.

The volume.htg file is processed and creates a volume.sdl file and volume.err file.

HelpTag Output
The output from HelpTag is a run–time help volume, named volume.sdl. If any errors
occurred during processing, they are reported in an error file (volume.err). If no errors were
encountered, the volume.err file contains copyright information and several status lines.

Setting the onerror=go option in your helptag.opt file allows the parser to continue
processing (if possible) after encountering an error. Without the onerror=go option, the
parser halts when the first error is detected. The volume.sdl file is not created until the
source file is without errors.

The volume.sdl file, plus your graphics files, are read by the Help System to display help
topics. The run–time help file has the same base name as your volume.htg file. For
example, if your volume.htg is named Librarian.htg, then the help volume name is
Librarian.sdl.

CAUTION:
Never rename a run–time help file or graphics file after running HelpTag. The
information stored in the volume.sdl file depends on the original names. If you rename
your volume.htg file or any of your graphic files, be sure to rerun HelpTag.

59CDE Help System Author’s and Programmer’s Guide

To Run the dthelptag Command Manually
Run the dthelptag command as follows:

dthelptag command–options volume parser–options

Where command–options are options entered before the volume name and parser–options
are options entered after the volume name. “Processing HelpTag Files (dthelptag)” lists all
available options.

Example: Commands
The following command processes a help volume named MyVolume:

dthelptag MyVolume

Using the –verbose option causes the progress of the processing to be displayed on your
screen:

dthelptag –verbose MyVolume

Adding a search path enables HelpTag to find files stored in a subdirectory (of the current
directory) named graphics:

dthelptag –verbose MyVolume search=graphics

Example: A helptag.opt File
Here’s a sample helptag.opt file showing that each option is on a separate line. It would be
appropriate for creating a draft version of the volume.

memo

onerror=go

search=graphics/

search=entityFiles/

Before producing the final version of the help volume, you would remove the memo and
onerror=go lines.

See Also
• Preparing an Installation Package” explains which help files are included in your

application installation package.

To Review and Correct Parser Errors
Look at the contents of the volume.err file after running HelpTag (where volume is the base
name of your volume.htg file).

Each error listed in the volume.err file begins with a string of asterisks (*****). For example,
the following error was detected at line 54 of the file actions:

Line 54 of actions,

Missing end tag for LIST:

...the execution host becomes the current working directory.

<s2 id=EverythingYouNeedToKnow> E...

Current element is LIST begun on Line 28 of actions.

60 CDE Help System Author’s and Programmer’s Guide

A few lines of the file are shown to give you some context for the error. Also, there is a hint
that the current element is a LIST started on line 28 of the same file. An <s2> is not allowed
within a list, so it appears that the author forgot to enter the <\list> end tag.

It’s possible for a single, simple error to produce several error messages. This is because
the first error may cause the parser to lose track of the intended context, making it
impossible to interpret subsequent markup properly.

Common Errors
Most processing errors result from these common mistakes:

• Omitting an end tag

• Using an incorrect entity name

• Referring to an invalid element ID

Omitting an end tag for an element is a common mistake. When creating elements, such as
a list, figure, note, caution, or warning, be sure to include the end tag. Check your markup
carefully especially if you have nested one element within another, such as a figure within a
list,

Errors can also be introduced by using an incorrect entity name. In most instances, it is
simply a misspelled word. In other cases, an entity name may have been changed, but
cross–references to the original name were overlooked. When you change an entity name,
remember to search your source file (or files) for all instances of the entity name.

Similarly, changing the ID assigned to an element affects any cross–reference or link to that
topic.

Viewing a Help Volume
The Help Viewer can be used to display any help volume. It supports all types of hyperlinks
except application–defined links (because it cannot know how your links are to be
interpreted).

If you are writing application help and your application is ready to use, you can also view
your help by running your application, then requesting help just as a user would.

To Display a Help Volume
1. Open File Manager and change to the directory where the volume.sdl file is located.

2. Double–click its icon.

The default action displays the file using the Help Viewer.

To Run the dthelpview Command Manually
If the volume.sdl file for the volume you want to display is either in the current directory or
has been registered, execute this command:

dthelpview –helpVolume volume.sdl

Or, if the volume.sdl is in another directory (and hasn’t been registered), execute this
command:

dthelpview –helpVolume /full–path/volume.sdl

The –helpVolume parameter can be shortened to –h in any of these commands.

61CDE Help System Author’s and Programmer’s Guide

Example
Suppose you just edited your help volume. First, process it with the HelpTag software:

dthelptag MyVolume

If no errors occurred, you could then display it with this command:

dthelpview –h MyVolume.sdl

See Also
• “Registering Your Application and Its Help”

Example: A Personal Help Directory
During a project, you may want to access the help volume you are developing, but not
expose it to all users on your system. For example, suppose your working directory is
/projects/help and your help volume is named Myvolume.

First, create the personal help directory in your home directory where you can register the
volume:

mkdir –p $HOME/.dt/help/C

Now create a symbolic link to the Myvolume.sdl file (which is created by the HelpTag
software):

ln –s /projects/help/Myvolume.sdl $HOME/.dt/help/C/Myvolume.sdl

You can now display the volume with the following command (regardless of your current
directory) because the.dt/help/C directory within your home directory is one of the first
places the Help System looks for help volumes.

dthelpview –helpVolume Myvolume

Adding Your Help to the Browser Volume
The desktop provides a special help volume called the browser volume that lists help
volumes available on your system. The browser volume is displayed by clicking the Help
Viewer control in the Front Panel.

You can view assorted help volumes directly from the browser volume. This allows access to
application–specific help without starting the application. Or, if you are writing standalone
help, this is the only way for users to get to your help.

62 CDE Help System Author’s and Programmer’s Guide

Browser help volume displaying help families

To make your help volume available in the browser volume, you create a help family file.
When your application is registered on the desktop, the presence of a family file causes the
help volume to be included in the browser volume.

Browser Volume
A desktop utility creates and updates the browser volume. When a user clicks on the Front
Panel Help Viewer for the first time, the utility is automatically run. It identifies help volumes
and help family files that are located in the help search path directories. It creates a file
called browser.hv in the user’s HomeDirectory/.dt/help/$DTUSERSESSION directory.
After initial creation, the volume is updated only if changes have occurred.

To manually update the browser volume, refer to “Generating a Browser Help Volume
(dthelpgen)”.

Any help volume listed in the browser volume can be viewed by selecting the volume title.
Because you can display and navigate through different volumes, the browser help window
includes an additional button, called Top Level. You can use this button to return to the
browser list after displaying one or more volumes.

Help Family File
The desktop utility examines help family files to identify which help volumes are gathered
into the browser volume.

Refer to the Advanced User’s and System Administrator’s Guide for a detailed explanation
of how an application and its help files are installed on the desktop.

To Create a Help Family
1. Pick a file name that is unique to your product. Use the.hf extension to identify the file as

a help family.

63CDE Help System Author’s and Programmer’s Guide

 family.hf

2. Enter the following lines into the file:

*.charSet: character–set
*.title: family title
*.bitmap: icon file
*.abstract: family abstract
*.volumes: volume volume volume ...

Where character–set specifies the character set used by the family title and family
abstract strings. See “Understanding Font Schemes” for a list of supported character
sets. The family title and family abstract should not contain any HelpTag markup; this file
is not processed with the HelpTag software.

The icon file is optional. If you provide one, the path you use to specify the location of the
file should be a complete path name. If you do not provide an icon, do not include the
*.bitmap resource in your family file.

The list of volume names identifies which volumes belong to the family. The volumes will
be listed in the order they appear on this line. A volume may be listed in more than one
family.

If any of the values occupy more than one line, end each line — except the last — with a
backslash (\).

Any line in the file that begins with an ! (exclamation mark) is a comment line and is
ignored.

3. When you prepare your final product, you should install your family.hf file with the rest of
your help files. When the desktop integration script, (dtappintegrate) is run, it creates the
symbolic links to your family file.

The Advanced User’s and System Administrator’s Guide describes how to run the
dtappintegrate script.

Example
Here’s a family file for the desktop’s online help. Comments at the top of the file identify the
family and release version.

!##
!# #
!# Desktop Help Family #
!# #
!# Version 1.0 #
!# #
!##
*.charSet: ISO–8859–1
*.title: Desktop Version 1.0
*.bitmap: /usr/dt/appconfig/help/C/cdelogo.pm
*.abstract: Overview and Basic Desktop Skills \
 * File Manager and the Desktop \
 * Front Panel \
 * Application Manager \
 * Style Manager \
 * Text Editor \
 * Mailer

64 CDE Help System Author’s and Programmer’s Guide

*.volumes: Intromgr.sdl Filemgr.sdl FPanel.sdl
 Appmanager.sdl Stylemgr.sdl
 Textedit.sdl Mailer.sdl

The help family file actually included with the desktop software may not exactly match this
example.

See Also
• “Character Sets and Multibyte Characters” for a list of supported character set names

To Display the browser Volume
1. Choose the Help Viewer control from the desktop’s Front Panel. (See Figure)

2. Scroll the help window to view the help families available on your system.

3. If desired, display a volume by selecting the help family title.

Note: To view help information about the Help System, choose the title Common Desktop
Environment and then Desktop Help System.

To Display the browser Volume Manually
• Run the dthelpview command as follows:

dthelpview –helpVolume browser

See Also
• “Displaying Help Topics (dthelpview)” lists dthelpview command line.

• dthelpgen (1) man page

Printing Help Topics
After displaying your help volume, you can print help topics. Using the Print dialog box
shown in Figure you can print an individual topic, a table of contents and index information,
or the entire help volume. Printed output omits graphics.

65CDE Help System Author’s and Programmer’s Guide

Help print dialog box

Testing Your Help
Testing your help volume is as important as testing any software product. Here are some
tips to help you plan your testing.

Validating Hyperlinks
• Display your help volume and try every hyperlink. Any underlined text (solid or dashed

underlines) is a hyperlink. Also, test any graphics that are hyperlinks. Graphic hyperlinks
use an open–cornered border (dashed or solid) around the image as a hyperlink cue.

• If you are writing application–specific help and you have included any JumpNewView,
Man, or AppDefined links, you must test these links from your application. Testing such
links using dthelpview does not ensure that the links will operate correctly from within
your application.

Verifying Entry Points
If you are writing application–specific help that uses IDs to access particular help topics,
there are two ways to verify that the IDs have been properly established within the help
volume:

• Run your application and request help just as a user will, trying each of the entry points.
This also verifies that the application is using the correct IDs.

• If your application is not ready to use (still under development), you can test each ID by
running dthelpview for each ID:

dthelpview –helpVolume volume.sdl –locationId id

Where id is the location ID that you want to test. If dthelpview displays the correct topic,
then the ID is okay.

Checking Index Entries
Users search or browse a help volume index to find help topics. Examine your index entries
carefully to eliminate any vague terms or duplicate entries. Also select each index entry to
verify that the topic displayed is the most appropriate information.

Testing Graphics
• Physically run your application on various displays to verify that the graphics are

acceptable on color, grayscale, and monochrome displays.

• You can also simulate other displays by changing the number of colors used by the
desktop. To do so, open Style Manager, choose Number Of Colors, and select a different
color option.

Checking for Parser Errors
When developing a help volume, it is often convenient to set the onerror=go option in the
helptag.opt file. If you have done this, you should remove the option and process your
source files a final time to ensure that no errors are encountered.

See Also
• “Generating a Browser Help Volume (dthelpgen)”

66 CDE Help System Author’s and Programmer’s Guide

HelpTag Markup Reference

This section describes all of the HelpTag markup elements (and their associated tags) in
alphabetical order. To help determine the name of a tag based on how it is used, the
elements are grouped below according to use. (A few elements appear in more than one
group.)

Meta information (information about your volume):

 <metainfo>
 <title>
 <copyright>
 <abstract>
 <otherfront> (nonhierarchical topic)

Structure of a help volume:

 <!entity>
 <helpvolume>
 <hometopic>
 <chapter>
 <s1> …<s9> (heading)
 <rsect> (reference section)
 <otherhead>
 <procedure>
 <p> (paragraph)

Inline elements:

 <book>
 <computer> (shorthand: “text”)
 <emph> (emphasis) (shorthand: !!text!!)
 <ex> (example) and <vex> (verbatim example)
 <image>
 <keycap> (shorthand: [[text]])
 <lineno> (line number)
 <newline>
 <p> (paragraph)
 <quote> (directional quotes)
 <sub> (subscript) (shorthand: _ _ text _ _)
 <super> (superscript) (shorthand: ^^text^^)
 <term> (shorthand: ++text++)
 <user> (user input)
 <var> (variable) (shorthand: %%text%%)
 &…; (see <!entity>)

Important information:

 <note>
 <caution>
 <warning>
 <emph> (emphasis) (shorthand: !!text!!)

Lists:

 <list>
 <lablist> (labeled list)
 <item> (shorthand: *)

Graphics:

 <figure>
 <graphic>

67CDE Help System Author’s and Programmer’s Guide

Glossary and index:

 <glossary>
 <dterm> (definition of term)
 <term> (shorthand: ++text++)
 <idx> (index)

Cross–references and hyperlinks:

 <xref> (cross–reference)
 <link>
 <location>
 <term>

Hidden text:

 <!–– … ––> (comment)
 <memo>

Titles and headings:

 <abbrev>
 <head>
 <otherhead>
 <procedure>
 <title> (title of help volume)

Override meaning of HelpTag markup:

 <vex> (verbatim example)

<!–– ... ––>
Comment

Identifies text you want the HelpTag software to ignore. Comments cannot be nested.

Syntax
<!–– comment text here ––>

The comment text can contain any text except two dashes (––).

Example
The following markup hides both a comment and a figure:

<!–– Let’s leave out this figure for now:

<figure entity=ProcessFlowChart>
Before and After Processing
<\figure>
––>

See Also
• see “<memo> ”

<abbrev>
Abbreviated title

68 CDE Help System Author’s and Programmer’s Guide

Indicates an alternate, typically shorter, heading for a topic that has a long title. When an
abbreviated title is provided, it is used in the Index and History dialog boxes rather than the
full title.

If a heading contains a graphical element, you must provide an <abbrev> that contains
only the text of the heading. Although the graphic image can be displayed in the topic tree,
the Index and History dialog boxes cannot display graphic elements.

An <abbrev> should not contain any markup.

Syntax
<topic–element> title

<abbrev> short title

Where topic–element is <hometopic>, <chapter>, <s1>, or any other element that begins a
new topic.

The <abbrev> tag must appear on the line immediately following the heading.

An end tag is not required.

Examples
Here is a simple example:

<chapter> Ways of Treating Headings that are Too Long

<abbrev> Long Headings

Suppose you want to have a topic that doesn’t have its title displayed in the help topic
display area, but you do want a title to appear in the topic tree. The following markup shows
how this can be done:

<chapter> ∅

<abbrev> chapter title

See Also
• “<chapter> ”

<abstract>
Abstract

Provides a short description of the help volume.

Syntax
<metainfo>

 .
 .
 .
 <abstract>
 abstract text here ...
 <\abstract>
 .
 .
 .
<\metainfo>

69CDE Help System Author’s and Programmer’s Guide

The abstract text should not contain HelpTag markup because the abstract may be read and
displayed by applications that don’t recognize markup.

The <abstract> element is automatically assigned the ID string _abstract. An
author–defined ID cannot be assigned. The _abstract ID can be used with the <link>
element, but not with the <xref> element.

Abstract text may contain an optional <head>.

Example
This markup briefly describes the contents of a help volume:

<abstract>
Online help for the Application Manager Version 1.0.
<\abstract>

Note
When creating a link to an element within the <metainfo> element, be sure it is a
type=Definition link.

The following markup shows how to create a link to the abstract:

<link hyperlink= ”_abstract” type=Definition>
Choose this link for an abstract.<\link>

See Also
• “<metainfo> ”

• “<head> ”

<<annotation text>>
Annotation

Provides an explanatory note or comment within an example (<ex> tag).

Syntax
<ex [side | stack]>

text of the example ...<<annotation text >>

<\ex>

Where:

side Default. Places the annotation to the right of the example text and on the
same line as the first line of the example.

stack Places the annotation below the example text.

Enclose the text of an annotation in double angle brackets, as follows:
<< this is the annotation text>>. An annotation can only be used within an <ex> tag. The
side and stack parameters of the <ex> tag can be used to position the annotation in relation
to the example text.

To insert a blank line in an annotation, use a space followed by an empty annotation,
wordspace <<>>.

70 CDE Help System Author’s and Programmer’s Guide

Example
The following markup uses the default side placement for the annotation:

<ex>
Login: <<Enter your name>>
<\ex>

It produces:

Login: Enter your name

The following markup uses the stack parameter to accommodate a long annotation:

<ex stack>
Quarterly Sales Reports

<<Q1: January, February, March Q2: April, May, June Q3: July,
August, September Q4: October, November, December>>
<\ex>

It produces the following Figure:

<book>
Book title

Identifies the title of a book.

Syntax
<book>book title<\book>

Or:

<book|book title|

HelpTag formats book titles using an italic font.

Example
Either of the following two variations:

Refer to <book>The Elements of Style<\book>
for further details.

Or:

Refer to <book|The Elements of Style|
for further details.

produce:

Refer to The Elements of Style for further details.

<caution>
Caution notice

71CDE Help System Author’s and Programmer’s Guide

Specifies information that warns the user about a potential loss of data or hazard.

Syntax
<caution>

text of caution
<\caution>

The default heading is ”Caution”. To specify a different heading, use the <head> tag as
shown here:

<caution><head>alternate heading

text of caution

<\caution>

The <\caution> end tag is required.

To specify that an icon be displayed with the caution, define a file entity at the top of your
help volume as follows:

<!entity CautionElementDefaultIconFile FILE ”filename”>

Where filename is the name of the icon graphic. A sample caution icon named cauticon.pm
is provided in the /usr/dt/dthelp/dthelptag/icons directory.

Example
Here is a caution message:

<caution>

There is no Undo for this selection. Before performing this task,
save any changes to your document.
<\caution>

The markup produces this output:

See Also
• “<note> ” includes an example of changing a heading.

• “<warning> ”

• “<figure> ”

• “<head> ”

<chapter>
Chapter

Indicates the start of a new topic with a new title.

72 CDE Help System Author’s and Programmer’s Guide

Syntax
<chapter id=id>title

topic text ...

An end tag is not required.

If the topic title is long, you may want to provide an alternate abbreviated title using
<abbrev>. The short title is used in the Index and History dialog boxes. If the title contains a
graphical element, create an <abbrev> with the title text only.

Example
Here are two markups that begin a new topic:

<chapter>A Manual of Style

<chapter id=DesktopTools>Desktop Tools

See Also
• “<abbrev> ”

• “<link> ”

• “<rsect> ”

• “<s1>…<s9> ”

• “ <xref> ”

<computer>
Computer literal

Displays text that represents computer input or output.

Syntax
<computer>text<\computer>

Or:

“text”

The shorthand form uses two “ (left apostrophes) and two ”(right apostrophes).

Examples
• The following markup:

<computer>Enter the correct numerical value.<\computer>

produces the following output:

Enter the correct numerical value.

• The following markup uses the shorthand form:

Everything in “computer” comes out looking “like this.”

and it produces:

Everything in computer comes out looking like this.

• Variables can be nested within computer text. For example, this markup:

73CDE Help System Author’s and Programmer’s Guide

‘‘void DisplayTopic (%%topic%%);’’

produces:

void DisplayTopic (topic);

See Also
• “<ex> ”

• “<user> ”

• “<var> ”

<copyright>
Copyright notice

Identifies text for the copyright notice.

Syntax
<metainfo>

 <title>Title (always before copyright)
 <copyright>
 © Copyright notice here ...

This element is optional within the <metainfo> section. If used, it must follow the <title>
element.

The end tag is not required.

The predefined entity © produces the copyright symbol ().

Example
The following markup assigns a title to the help volume and provides copyright information:

<metainfo>

<title>XYZ World Almanac
<copyright>
© Copyright 1995 XYZ Company. All rights reserved.

It produces:

 Copyright 1995 XYZ Company. All rights reserved.

See Also
• “<metainfo> ”

• “<title> ”

<dterm>
Defined term

Identifies a term and the term’s definition within the glossary.

Syntax
<glossary>

74 CDE Help System Author’s and Programmer’s Guide

 <dterm>first term
 definition of first term
 .
 .
 .
 <dterm>Nth term
 definition of Nth term

This element is used within the <glossary> section.

The name of the term follows the <dterm> tag and appears on the same line. The term’s
definition begins on the line following the <dterm> tag.

An end tag is not required.

Example
The following markup defines the first two words in a glossary:

<glossary>

<dterm>algorithm
A mathematical rule or procedure for solving a problem.

<dterm>click
To press and release a mouse button.

See Also
• “<glossary> ”

• “<term> ”

<emph>
Emphasized text

Formats the text in a font that draws attention to the text.

Syntax
<emph>text<\emph>

Or:

!!text!!

The shorthand form for the <emph> element is a set of double exclamation marks (!!) before
and after the text.

If you use the <emph> start tag, the <\emph> end tag is required.

Example
Either of the following two markups:

A thousand times <emph>no<\emph>.

A thousand times !!no!!.

produces:

A thousand times no.

75CDE Help System Author’s and Programmer’s Guide

See Also
• “<book> ”

• “<var> ”

<!entity>
Entity declaration

Assigns an entity name to a string of characters or to an external file.

Syntax
<!entity entityname ”string”>

Or:

<!entity entityname FILE ”filename”>

An entity name can contain up to 64 letters, digits, and hyphens. Case is not significant in
entity names, but is often used to improve readability for the author. The first character must
be a letter. No space is permitted between the < (left angle bracket), ! (exclamation mark),
and entity in an <!entity> declaration.

Entity declarations must always precede any other markup or text in the help volume.

Where you want the defined entity to appear, insert an entity reference using this syntax:

&entityname;

The entity reference consists of an & (ampersand), followed by the entity name (as defined
in the entity declaration), and ends with a ; (semicolon).

Purposes for Entities
There are four common reasons for defining an entity:

• Text that is associated with an entity name appears only once so that changing the text
requires making a change in only one place. All references to the entity automatically
change when HelpTag reprocesses the files.

• The inefficiency of typing the same long or complex text string many times can be
avoided (along with typing mistakes) by typing just a short entity reference wherever that
text string will appear. The full text string needs to be typed only once.

• The <figure> and <graphic> elements do not accept a file name. The name of the file that
contains the figure must be specified in an entity declaration.

• It is convenient to put the help text into multiple files, yet HelpTag accepts only one
source file. These needs can be balanced by creating one file that contains entity
declarations and entity references that refer to the files that contain the actual help text.

Examples
• The volume.htg source file can contain the following entity declarations and entity

references so that the actual text can be put into the named files:

<!entity topic1 FILE ”topic1”>
<!entity topic2 FILE ”topic2”>
<!entity topic3 FILE ”topic3”>

&topic1;

76 CDE Help System Author’s and Programmer’s Guide

&topic2;
&topic3;

• The following entity declaration causes the words ”Architectural Analysis of Aircraft
Precision Components” to be displayed wherever the &apc; entity reference appears in
the marked–up files.

<!entity apc ”Architectural Analysis of Aircraft Precision
Components”>

• The following entity declaration for a figure is placed at the beginning of the source file:

<!entity CloseUpFig FILE ”figname.tif”>

and the figure would be inserted where the following markup appears:

<figure entity=CloseUpFig>
Close Up View
<\figure>

See Also
• “ Using Entities”

• “<figure> ”

• “<xref> ”

<esc>
Escape

Causes text to be passed directly to the run–time help file without being interpreted by
HelpTag. In a customized application for example, an author could embed Semantic Delivery
Language (SDL) markup in the help source file. The <esc> element prevents the SDL
markup from being read by the HelpTag parser. When the help volume is displayed with the
Help Viewer, the authored SDL markup is processed.

Do not use the <esc> tag to escape individual HelpTag symbols or markup examples. To
display HelpTag symbols, such as < (left angle bracket), \ (backslash), or & (ampersand),
precede each symbol with an ampersand. Use the <vex> element to provide HelpTag
markup examples in a help volume.

Syntax
<esc>text<\esc>

Or:

<esc|text|

Note: If the long form is used, the text cannot contain the three–character sequence <\x
(the less–than symbol followed by a backslash followed by a letter). If the short form
is used, the text cannot contain the |(vertical bar) character.

If you use the first syntax, the <\esc> end tag is required.

See Also
• “Displaying HelpTag Symbols”

• “<vex> ”

77CDE Help System Author’s and Programmer’s Guide

<ex>
Computer example

Shows computer text without changing the spacing or line breaks.

Syntax
<ex [nonumber | number] [smaller | smallest] [side | stack]>

example text here ...
<\ex>

Where:

nonumber (Default.) Omits the adding of line numbers to the beginning of each line.

number Puts a line number at the beginning of each line.

smaller Displays the example using smaller fonts.

smallest Displays the example using smallest fonts. This makes long lines fit within a
narrower width.

side Applicable only when using an annotation within the example. Specifies the
position of the annotation text in relation to the example text. The default
position is side, which places the annotation to the right of the example text
and on the same line as the first line of the example.

stack Places the annotation below the example text.

Examples are printed in computer font, and they are indented from the left text margin.

If you include the number attribute, the line numbers of the example will be numbered. This
is useful for referring to specific lines.

The following character pairs, which have special meanings in other contexts, are treated as
ordinary text within an example:

!! double exclamation

–– double minus sign
++ double plus sign
” double quote

The <\ex> end tag is required.

Example
The following markup:

<ex>
Examples are printed in computer
font. Line breaks are preserved.
<\ex>

produces the following Figure:

78 CDE Help System Author’s and Programmer’s Guide

See Also
• “<computer> ”

• “<user> ”

• “<vex> ”

<figure>
Figure

Inserts a graphical image.

Syntax
<figure entity=entity [id=id [nonumber | number= n]

[left |center | right] [cappos=[capleft | capcenter | capright]]
[ghyperlink=id [glinktype=type] [gdescription=text]]] >
caption string
<\figure>

entity=name Specifies a file entity which identifies the file that contains the
graphic image to be inserted.

id= name Optional. Defines an ID name that can be used in cross–references
to this figure.

nonumber Optional. Suppresses the word “Figure” and the automatically
generated figure number.

number= n Optional. Used to override the automatically generated figure
number.

left, center, or right Specifies horizontal alignment of the image within the current page
width.

cappos= position Specifies the horizontal alignment of the caption using the values
capleft, capcenter or capright. A caption is optional.

ghyperlink=”id” Optional. Specifies that the graphic portion of the figure be a
hyperlink. Follows the same usage as the hyperlink attribute in the
<link> element. References to this location would use the specified
id identifier.

glinktype=type Optional. Specifies the type of hyperlink. The default type is Jump.
Other type values include JumpNewView, Definition, Man, Execute,
and AppDefined. The ghyperlink parameter and id value are
required when using parameter. Follows the same usage as the
type attribute in the <link> element.

gdescription=”text” Optional. Provides a description of the hyperlink. The ghyperlink
parameter and id value are required when using this parameter.

The <\figure> end tag is required.

To integrate an external graphics file into a help topic, you must have an entity declaration
(<!entity entityname FILE ”filename”>) that associates the entity name with the graphic’s file
name.

79CDE Help System Author’s and Programmer’s Guide

Examples
• The following markup inserts a graphic with the specified caption and an automatically

generated figure number:

<!entity MapFigure FILE ”worldmap.xwd”>
 .
 .
 .
<figure entity=MapFigure>
Caption for Figure
<\figure>

• The following markup inserts a figure that is numbered but does not have a caption.

<!entity StateMap FILE ”oregon.xwd”>

 .
 .
 .
<figure entity=StateMap>
<\figure>
 .
 .
 .

• The following markup inserts a figure using a specific figure number and a caption. The
caption is split into two lines where the \ (backslash) character appears.

<figure number=99 entity=SchemDiag>
Schematic that Illustrates\the Overall System Design
<\figure>

See Also
• “<!entity> ”

• “<graphic> ”

• “<link> ”

• “<xref> ”

• “Execution Aliases” provides information about using execution links

<glossary>
Glossary

Starts the glossary section which contains the definitions for all the terms that are marked
with the <term> element.

Syntax
<glossary>

<dterm>first term
definition of first term can continue over multiple lines or
paragraphs

<dterm>second term
definition of second term ...
 .

80 CDE Help System Author’s and Programmer’s Guide

 .
 .

”Glossary” is automatically used as the heading for the glossary section.

A <dterm> element identifies each term and its definition.

All terms marked with <term> without the nogloss parameter are required to be in the
glossary. If the term is not in the glossary, omitted terms are listed in the volume.err file,
which is created when you run HelpTag.

An end tag for <glossary> is not required.

Example
Here is a simple glossary with two definitions:

<glossary>

<dterm>oxymoron
A combination of contradictory words.

<dterm>veritable
Being in fact the thing named. Authentic.

See Also
• “<term> ”

• “<dterm>”

<graphic>
Inline graphic

Inserts a graphical element within a line of text.

Syntax
<graphic entity=name [id=id]>

Where:

name An entity name that is defined in an entity declaration. The entity declaration
associates the entity name with the name of the file that contains the
graphic to be inserted.

id= name Optional. Defines an ID name that can be used in cross–references to this
figure.

The <graphic> element is similar to <figure> except that the <graphic> element is intended
for embedding small graphics within text, whereas the <figure> element inserts figures
between paragraphs.

Examples:
• The following markup first defines an entity (mini–icon) as being associated with the

contents of a graphics file (named mini.pm). Then the < graphic> element
indicates the location of the graphic within a line of text.

<!entity mini–icon FILE ”mini.pm”>

 .
 .

81CDE Help System Author’s and Programmer’s Guide

 .
The <graphic entity=mini–icon> icon is used to represent very
small images.

• The following markup first defines a topic whose ID is mini–icon–topic. It then shows
how to use the inline graphic as a hyperlink to this topic.

<s1 id=mini–icon–topic>When you click on the inline graphic, it
will bring you to this topic.

.

.

.
The <link mini–icon–topic> <graphic entity=mini–icon> <\link>
icon is to represent very small things.

See Also
• “<!entity> ”

• “<figure> ”

• “<link> ”

• “<p> ”

<head>
Heading

Indicates the title for elements that normally do not have a title (such as <abstract>,
<paragraph>, <list>, or <otherfront>) or have a default title (such as <note>,
<caution>, and <warning>).

Syntax
<element><head>title text

A heading starts with the first nonblank character after the <head> tag. The <head> tag can
appear on the same line as the element to which a heading is being added, or on the
following line.

The <head> element can be used with elements that expect a title, but it is not required in
those cases.

Headings that are wider than the heading area are automatically wrapped onto successive
lines. To force a specific line break, put a \ (backslash) where you want the line to break.

A heading ends at the end of the line in the source file unless the line ends with an &
(ampersand). If a heading spans multiple lines in your source file, put an ampersand after all
the lines except the last.

The <\head> end tag is not required.

Examples
• The following markup adds a title to a list and specifies the start of a new line where the \

(backslash) appears:

<list><head>Printing Options\for the QRZ Hardware

It produces this output:

82 CDE Help System Author’s and Programmer’s Guide

• The following markup overrides the default ”Note” heading:

<note><head>Tips and Shortcuts

Keyboard menu accelerators provide quick access to menu commands.
<\note>

It produces this output:

See Also
• “<abstract>”

• “<caution> ”

• “<image> ”

• “<lablist> ”

• “<location> ”

• “<note> ”

• “<otherfront> ”

• “<p> ”

• “<warning> ”

<helpvolume>
 Application help volume

This is the ”root” structural element; it contains all the markup for an entire help volume.

Syntax
all entity declarations

 .
 .
 .
<helpvolume>
 .
 .
 .
 all of your help is included here, either
 literally or using file entity references
 .
 .
 .
<\helpvolume>

83CDE Help System Author’s and Programmer’s Guide

If you do not enter this tag, its presence is automatically assumed by the HelpTag software.

All entity declarations must appear before the <helpvolume> start tag.

See Also
• “<abstract>”

• “A Help Volume at a Glance”

• “<!entity> ”

• “<hometopic> ”

• “<metainfo> ”

<hometopic>
”Home” or top–level help topic

Identifies the start of the top–level help topic.

Syntax
<hometopic>heading
topic text begins here ...

There is only one home topic for a help volume. It comes after the meta information
(<metainfo>) and before the first <chapter> or <s1>.

The <hometopic> element does not support an author–defined ID. The HelpTag software
assigns the predefined ID _hometopic.

To create a hyperlink to the home topic, use this syntax:

<link hyperlink= ”_hometopic”> …<\link> .

Example
<hometopic>Welcome to Online Help

This is the home topic for the online help ...

<chapter>First Subtopic
This is the first subtopic ...

<chapter>Second Subtopic
This is the second subtopic ...
 .
 .
 .

See Also
• “A Help Volume at a Glance”

• “<link> ”

• “To Create a Home Topic”

• “<metainfo> ”

84 CDE Help System Author’s and Programmer’s Guide

<idx>
Index entry

Defines an entry to appear in the help volume index.

Syntax
<idx>text<\idx>

Or:

<idx|text|

Or:

<idx>text<sort>sort key<\idx>

Where:

text The text string that appears in the keyword index.

sort key An optional text string used when sorting the index. The sort key influences
where the text appears in the keyword index. The sort key string does not
appear in the keyword index.

Choosing the Index button in a general help dialog box displays a help index. Adding index
entries to help topics is important because a user can search the index for a word or phrase
to find help on a subject.

Either the <idx> start and end tags or the short form can be used.

The <sort> element changes the sort order for an index entry. Specifically, the <sort>
element is used within the <idx> element to request that the keyword appear at the location
indicated by the sort key string. No end tag for <sort> is required.

Examples
• The following markup shows the definition of some simple index entries using the

shortform. The index entries are indented to make the source text easier to read.

A portable personal computer has a full–sized keyboard, built–in
disk drives and a detachable LCD screen.

<idx|keyboard|
<idx|disk drive|
<idx|screen, LCD|
<idx|personal computer, portable|
<idx|portable, personal computer|

• The following example displays ”+” in the index, but it appears where ”plus” would appear
in the alphabetical list of entries.

<idx>+<sort>plus<\idx>

<image>
As–is image

Shows text with the same line breaks as the source text.

85CDE Help System Author’s and Programmer’s Guide

Syntax
<image [indent][id=id][gentity=graphic–ent [gposition=pos]
[ghyperlink=gid [glinktype=type]]]>

text
<\image>

Where:

indent Optional. Specifies that the paragraph be indented 6 spaces from the
current left margin.

id=id Optional. Defines an ID name that can be used in cross–references to this
location.

gentity=graphic–ent
Optional. The name of a graphic entity around which the text is to be
wrapped. The gentity parameter and graphic–ent value are required if
the gposition , ghyperlink , or glinktype parameter is used.

gposition=pos
Optional. Either left or right to indicate whether the optional graphic is
to be left–justified or right–justified.

ghyperlink=gid
Optional. Specifies that the graphic be a hyperlink and specifies the
destination of the hyperlink. The ghyperlink parameter and gid value
are required if the glinktype parameter is used. Follows the same usage
as the hyperlink attribute in the <link> element. (The id value, not the gid
value, would be used to reference the location of the image text.)

glinktype=type
Optional. Specifies the type of hyperlink. The default type is Jump. Other
type values include JumpNewView, Definition, Man, Execute, and
AppDefined. Follows the same usage as the type attribute in the <link>
element.

text The text of the paragraph that wraps around the graphic.

Text between the <image> and <\image> tags is shown with the same spacing, indentation,
and line breaks that appear in the actual text. No justification, word wrapping, or removal of
empty lines is done. However, a proportional font is used, so columns of text that are lined
up on a computer screen may not line up in the displayed help information. If the displayed
text is too wide to fit within the display area, a horizontal scroll bar automatically appears.

All inline text elements and special characters are recognized.

An optional <head> can be used with <image>. If you intend to create a cross–reference to
the element using <xref>, the <head> tag is required.

The indent parameter causes the displayed text to be indented from the left margin.

Either the start and end tags (<image> and <\image>) or the short form (<image|…|) can be
used.

See Also
• “<ex> ”

• “<vex> ”

• “<p> ”

86 CDE Help System Author’s and Programmer’s Guide

• “Execution Aliases” provides information about using execution links

<item>
List item

Identifies an item in a list.

Syntax
<list [id= id]>

 * List item
 * List item
<\list>

Or:

<list order>
 <item id=name1>List item
 <item id=name2>List item
 <item id=name3>List item
 .
 .
 .
<\list>

The shorthand form, which is an * (asterisk), is almost always used.

The long form allows you to cross–reference an item in a list. You can only cross–reference
items in an ordered (numbered) list. The automatically assigned item numbers are used in
the cross–reference text (which HelpTag substitutes for the <xref> element). Unlike a
number, a bullet character is not a meaningful substitution for the cross–reference text.

See Also
• “<list> ”

• “<head> ”

• “<xref> ”

<keycap>
Keyboard keys

Represents keyboard keys.

Syntax
<keycap> keycap characters<\keycap>

Or:

[[keycap characters]]

The shorthand form is [[(two left square brackets) and]] (two right square brackets) before
and after the keycap characters.

Entity references for special symbol characters, such as arrows, can be used. Multiline
keycaps are not available.

87CDE Help System Author’s and Programmer’s Guide

Example
The following markup:

Press [[Control]] + [[Home]] to go to the beginning of your
document.

produces this output:

See Also
• “<list> ”

• “<head> ”

• “<xref> ”

<lablist>
Labeled list

Starts a labeled list in which the labels appear in the left column and the items (to which the
labels refer) appear in the right column.

Syntax
<lablist [loose | tight][wrap | nowrap]>

[<labheads> \Heading 1 \ Heading 2]
\label\ text for the first item
\label\ text for the second item
 .
 .
 .
<\lablist>

Where:

loose Default. Requests a vertical gap between the items in the list.

tight Requests no extra vertical space between items in the list.

wrap Default. Allows long labels to wrap to multiple lines.

nowrap Prevents labels from wrapping to multiple lines.

Backslashes (\) indicate the start and end of a label; leading and trailing spaces are ignored.
Long labels are broken into multiple lines unless nowrap is used. The predefined character
entity, (&sigspace;), can be used to insert a nonbreaking space into a label.

The text of the labeled item follows the second backslash, either on the same line or on the
following line. The end of the item is indicated by one of the following:

• An empty line

• Start of another labeled item

• <\lablist> end tag

88 CDE Help System Author’s and Programmer’s Guide

If a labeled item consists of more than one paragraph, leave an empty line between the
paragraphs. The end of the labeled list is indicated by the required <\lablist> end tag.

The optional column headings, one for each column, immediately follow the <labheads> tag
(on the same line). The column headings are separated from one another by the \
(backslash). The <\labheads> end tag is not required. However, the <lablist> end tag is
required.

Example
The following markup:

<lablist tight>
<labheads> \ Unit \ Meaning

\in\ inches
\mm\ millimeters
\cm\ centimeters

<\lablist>

produces this output:

Unit Meaning

in inches

mm millimeters

cm centimeters

The following markup allows long labels to break into multiple lines.

<lablist>

\Creating Your System Password:\
To log into your computer, you must enter a password.

\Viewing the Message of the Day:\
To view the message of the day when you log into your computer,
edit your startup configuration file.

\Setting the System Time and Date:\
To set the date enter the day, month, and year in the format
dd–mm–yy. To set the time, use the format hh–mm–ss.
<\lablist>

It produces the following output:

Adding the nowrap parameter in the same markup produces
this output:

89CDE Help System Author’s and Programmer’s Guide

See Also
• “<head> ”

• “<list> ”

<lineno>
Line number

Provides a cross–reference to a specified line in an example.

Syntax
<ex number>

example text <lineno id=name>

.

.

.
<\ex>

This element is used only in a numbered example. Enter the <lineno> tag at the end of the
line you want to refer to. The id parameter assigns an ID that can be used to create a
cross–reference to the line number.

Example
This markup creates a numbered example that includes a cross–reference to the third line.

<ex number>

Enter Daily Account Total

Run Invoice Summary Report

Go to Monthly Ledger <lineno id=ledger>

Run Daily Update
<\ex>

.

.

.
To run closing reports, return to <xref ledger> and run the Past
Due Accounts Report.

The line number where the ID is located is substituted for the <xref ledger>
cross–reference. It produces this sentence:

To run closing reports, return to 3 and run the Past Due Accounts Report.

The end tag is not required for <lineno>.

90 CDE Help System Author’s and Programmer’s Guide

See Also
• “<ex> ”

<link>
Hyperlink

Delimits text or an inline <graphic> to be used as a hyperlink.

Syntax
<link hyperlink [type] [” description ”]> text <\link>

Or:

<link hyperlink= ” hyperlink ” [type= type] [description=
” description ”]>

The hyperlink attribute, which is required, is a value that identifies the destination or the
behavior for the link. For a standard ”jump” link, hyperlink is the ID of the element you want
to jump to.

The type parameter can have the following values:

Jump Default. Jumps to the topic that contains the ID hyperlink .

JumpNewView Jumps to the topic that contains the ID hyperlink, but requests that the
hosting application display the topic in a new window.

Definition Displays, in a temporary pop–up window, the topic that contains the ID
hyperlink.

Execute Executes the hyperlink string as a command.

Man Displays a man page using the hyperlink string as the parameter to the man
command.

AppDefined Sends the hyperlink string to the hosting application for special processing.

The text between the start and end tag becomes the ”hot spot” that the user will choose to
invoke the link. Any word or phrase used as a hyperlink is underlined when displayed.
Capitalization is not significant for the hyperlink and type values.

A hyperlink that executes a command is called an execution link. The command to be
executed can be included in the <link> command or defined as an execution alias, which
is a type of resource. For information about using execution links, see “Execution Link
Control”.

Notes
• Avoid using the type keywords (listed above) as values for hyperlink. If you must do so,

explicitly identify the parameters as shown in the second syntax line.

• The <link> element is not needed in a cross–reference that uses the <xref> element
because a hyperlink is automatically created where the <xref> element is used.

Examples
• The following markup defines a simple hyperlink to a topic with the ID Intro. Notice

that capitalization of the ID is not significant.

<s1 id=Intro>Introducing the Desktop
.

91CDE Help System Author’s and Programmer’s Guide

.

.
Refer to the <link intro>Introduction<\link>.

• The following markup defines the same hyperlink jump as in the previous example but the
<link> element is not used because a cross–reference (<xref…>) is automatically a
hyperlink. In this case, the title of the Intro topic is automatically supplied by HelpTag.

Refer to <xref intro>.

This markup produces this output:

Refer to Introducing the Desktop.

• The following markup defines a hyperlink that is activated when the inline graphic is
chosen. A new window is opened to display the “clockfeatures” topic.

Whenever you see the <link clockfeatures JumpNewView>
<graphic entity=StopWatchIcon><\link> symbol, stop and answer the
quiz questions.

It produces this output:

• The following markup creates a link that displays the man page for the grep command:

For more details, refer to the <link grep Man>grep man
page<\link>.

• The following markup creates an execution link using an execution alias named
startDtterm. The alias name and the command it executes are defined in the
application’s application defaults file.

To open a terminal window, click <link hyperlink=”DtHelpExecAlias
startDtterm” Execute>Start Terminal Emulator.<\link>

For information about execution aliases and how to define them, see see “Execution
Aliases”.

See Also
• “<figure> ”

• “<hometopic> ”

• “<idx> ”

• “<image> ”

• “<location> ”

• “<xref> ”

• “Execution Link Control”

<list>
List

92 CDE Help System Author’s and Programmer’s Guide

Starts a list consisting of items that are optionally marked with bullets or automatically
generated numbers or letters.

Syntax
<list [bullet | order | plain] [loose | tight][continue]

[lalpha |ualpha | lroman | uroman | arabic] >

 * first item
 * second item
 .
 .
 .
<\list>

Where:

bullet Default. Displays a bullet before each item.

order Displays a number in front of each item. The numbers are automatically
generated and begin with the number one. The default is Arabic numbers.
Ordered lists can also use alphabetical sequences or Roman numerals.

plain Does not put a bullet, number, or letter in front of each item.

continue Requests that the numbering of items continue from the previous list.

loose Default. Requests a vertical gap between the items.

tight Requests no extra vertical spacing between the items.

lalpha Lowercase alphabet.

ualpha Uppercase alphabet.

lroman Lowercase Roman numeral.

uroman Uppercase Roman numeral.

arabic Default for order list type.

Each item must start on a new line preceded by either an asterisk (*) or the <item> tag. The
asterisk is the shorthand form of the <item> tag. Spaces and tabs may appear on either side
of the asterisk. Items may continue over multiple lines. An item can consist of multiple
paragraphs, in which case an empty line must separate the paragraphs. The nesting of lists
is allowed, so a list can appear within a list.

The <\list> end tag is required.

Examples
The following markup examples:

<list>
* chocolate
* raspberry
* vanilla
<\list>

<list plain tight>
* Word Processing
* Graphics
* Printing
<\list>

93CDE Help System Author’s and Programmer’s Guide

<list order lalpha>
* Word Processing
* Graphics
* Printing
<\list>

produce the following output:

See Also
• “<item> ”

• “<lablist> ”

• “<head> ”

<location>
Location

Defines an ID as referring to the location of the <location> element. The <location> element
enables a portion of a topic to serve as a destination for a hyperlink using the <link> or
<xref> element.

Syntax
<location id=id>text<\location>

Or:

<location id=id|text|

Where:

id The identifier for the current location, which can be used as a destination for
hyperlinks.

text The block of text where you want to assign the ID.

The <location> element is not needed at locations where there is already an element (such
as <hometopic> or <figure>) that has a built–in ID or accommodates an author–defined id
parameter.

Cross–references created with the <xref> element substitute the text between the
<location> start and end tag for the <xref> element.

Examples
The following markup names a location and elsewhere creates a hyperlink to the location.

94 CDE Help System Author’s and Programmer’s Guide

<s1 id=ConfigTopic> Configuration

...
<location id=ConfigTopicBody> some text <\location>
 ...
<s1 id=UseTopic> Usage
 ...
See <link ConfigTopicBody>Configuration<\link>
for additional information.

The advantage of linking to the ID in the <location> element is that the help window
automatically scrolls to the point where the <location> tag is entered. In contrast, a link to
the topic’s ID (”ConfigTopic” in this case), always goes to the top of the topic.

The <location> element can also reference a position in your file using the predefined
entity, (∅), as a placeholder.

Adding this markup at a key position in your file, allows you to create a link to that specific
location:

paragraph text

.

.

.
<location id=pointA>∅<\location>

.

.

.

See Also
• “<link> ”

• “<xref> ”

<memo>
Memo

Identifies a writer’s comments or questions, which do not appear in the final help volume.

Syntax
<memo>

memo text
<\memo>

Or:

<memo|memo text |

Memo text is printed in drafts of your help volume if you specify memo in the helptag.opt file.
Otherwise, memo text is not printed, especially when you create the final version of the help
volume. Memo text, when it appears, is printed in a different typeface. Do not use markup
within memo text.

Examples
Here is an example of a memo:

<memo>

95CDE Help System Author’s and Programmer’s Guide

Patti: We need a drawing to illustrate this.
<\memo>

The following markup uses the short form of the <memo> element:

<memo|Mike: Please explain how the following

command is supposed to work|

See Also
• “To Insert a Writer’s Memo ”

• Sample helptag.opt file

<metainfo>
Meta information

Starts the meta information section, which contains information about the information
contained in the help volume. Meta information includes the volume’s title and a copyright
notice.

Syntax
<helpvolume>

 <metainfo>
 <title>volume title
 <copyright>
 © Copyright XYZ Company 1995...
 <abstract>
 brief description of help volume
 .
 .
 .
 <\metainfo>
<hometopic> ...
 .
 .
 .

The meta information section is optional, but it is typically included in a help volume.
Although optional, the title, copyright, and abstract subsections provide useful information
about your help volume and are recommended.

If you include any of these subsections, the meta information section is required.

The <otherfront> element can be used to define subsections other than the predefined title,
copyright, and abstract subsections.

The <\metainfo> end tag is required.

Example
<metainfo>

<title>Inventory Tracking Software

<copyright>
© Copyright 1995 XYZ Company.
All rights reserved.

96 CDE Help System Author’s and Programmer’s Guide

<abstract>
Explains how to use the Inventory Tracking Software

<\metainfo>

See Also
• “<title> ”

• “<copyright> ”

• “<abstract>”

• “<otherfront> ”

<newline>
New line

Starts a new line within a paragraph or annotation.

Syntax
text<newline>text on next line

Text that follows the <newline> element begins on a new line.

Example
The following markup ensures that the path name begins on a new line:

Put your files for the manual in the special directory
<newline> /projects/userguide/draftdoc .

See Also
• “<vex> ”

• “<ex> ”

• “<image> ”

<note>
Note

Creates a special format which attracts attention to text that makes an important point.

Syntax
<note>

text of note
<\note>

The default heading for the note is ”Note”. To specify a different heading, use the <head>
element.

If you want an icon to appear with the note, define NoteElementDefaultIconFile in an
<!entity …> declaration.

97CDE Help System Author’s and Programmer’s Guide

The default note icon named note icon.pm is located in the /usr/dt/dthelp/dthelptag/icons
directory.

The <\note> end tag is required.

Examples
• The following markup uses the default heading:

<note>
Warranty information is in your installation manual.
<\note>

• The following markup specifies a different heading:

<note><head>Read This First
Warranty information is in your installation manual.
<\note>

See Also
• “<caution> ”

• “<warning> ”

• “<head> ”

<otherfront>
Other meta information (front matter)

Used for meta information (front matter) that does not fit within one of the predefined
categories such as title, copyright, and abstract. The <otherfront> element can also be
used to create a nonhierarchical topic. Because a nonhierarchical topic does not appear in
the topic tree, a hyperlink must be added to display the topic. The <link> or <xref> element
can be used to create a hyperlink to the <otherfront> element.

Syntax
<metainfo>

 .
 .
 .
<otherfront [id= id]><head> title of section
 text

If a heading is needed, use the <head> element.

<otherfront> must follow all other subsections of <metainfo>.

See Also
• “<metainfo> ”

• “<head> ”

<otherhead>
Other heading

Creates a subheading within a topic.

98 CDE Help System Author’s and Programmer’s Guide

Syntax
<otherhead> heading

Headings may occur anywhere within the text of a topic. The <otherhead> element does not
appear in the list of help topics displayed in the topic tree.

The <\otherhead> end tag is not required.

Example
Here is an example in which <otherhead> elements identify two subsections within an <s1>
topic:

<s1>Integration Tasks

There are two main tasks required to integrate your application.

<otherhead> Editing Configuration Files
Configuration files identify the colors, icons, and actions used by an
application.

<otherhead> Archiving Configuration Files
.
.
.

This markup produces the folowing output:

See Also
• “<head> ”

• “<procedure> ”

• “<rsect> ”

• “<s1>…<s9> ”

<p>
New paragraph

Starts a paragraph that is indented or wrapped around a graphic.

Syntax
<p [indent] [gentity= graphic–ent [gposition= pos]
[ghyperlink= gid [glinktype= type]]] [id= id] > text...

Where:

indent Optional. Specifies that the paragraph be indented 6 spaces from the
current left margin.

99CDE Help System Author’s and Programmer’s Guide

gentity=graphic–ent
Optional. The name of a graphic entity around which the paragraph is to be
wrapped. The gentity parameter and graphic–ent value are required if
the gposition , ghyperlink , or glinktype parameter is used.

gposition=pos Optional. Either left or right to indicate whether the optional graphic is
to be left–justified or right–justified.

ghyperlink=gid
Optional. Specifies that the graphic be a hyperlink and specifies the
destination of the hyperlink. The ghyperlink parameter and gid value
are required if the glinktype parameter is used. Follows the same usage
as the hyperlink attribute in the <link> element. (The id value, not the gid
value, would be used to reference this paragraph’s location.)

glinktype=type Optional. Specifies the type of hyperlink. The default type is Jump. Other
type values include JumpNewView, Definition, Man, Execute, and
AppDefined. Follows the same usage as the type attribute in the <link>
element.

id=id Optional. Defines an ID name that can be used in cross–references to this
location.

text The text of the paragraph that wraps around the graphic.

Use the <p> element if you need to indent a paragraph, wrap the paragraph around a
graphic, or use a run–in head style paragraph.

An optional <head> can be used with <p>. If you intend to create a cross–reference to the
element using <xref>, a <head> tag is required. Use the <head> and <\head> tags to
delimit the heading text.

A <\p> end tag is not required.

Examples
• Here are two paragraphs, the second of which is indented:

Some people do not like to read instruction manuals.
<p indent>This is not always a good idea.

produces:

Some people do not like to read instruction manuals.
 This is not always a good idea.

• This markup creates a paragraph style with a run–in head.

<p><head>Examples and Illustrations <\head>
Examples, perhaps the most common pattern of organization, are
appropriate whenever the reader might be tempted to ask <quote>
For example?<\quote>

It produces this output:

100 CDE Help System Author’s and Programmer’s Guide

See Also
• “<head> ”

• “<procedure> ”

• “<s1>…<s9> ”

• “To Wrap Text around a Graphic”

• “Execution Aliases” provides information about using execution links

<procedure>
Procedure

Starts a section within a topic.

Syntax
<procedure>heading

procedure text...

Procedures may occur anywhere within the text of a topic. They are not included in the list of
topics displayed in the topic tree.

The end tag is not needed.

Example
This markup:

<procedure> Entering Special Characters

To enter Greek or mathematical characters in your document, use
the Symbols font.

produces this output:

See Also
• “<head> ”

• “<otherhead> ”

• “<s1>…<s9> ”

<quote>
Quote

Puts text within double quotation marks using open and close quote characters.

Syntax
<quote>text<\quote>

Or:

101CDE Help System Author’s and Programmer’s Guide

”text”

Use the start and end tags (<quote>…<\quote>) or a pair of double quotation marks (”…”)
to delimit the text.

Example
The following markup:

... referred to in this manual as ”the Standard” ...

produces:

…referred to in this manual as “the Standard”…

See Also
• “<book> ”

• “<computer> ”

• “<var> ”

<rsect>
Reference section

Identifies an entry in the reference section.

Syntax
<rsect [id=id]>reference section heading

 .
 .
 .
<rsub>reference subsection heading

The <rsect> element can be used to identify a reference section. It is useful to identify
reference material that is presented in a series of similar sections. For example, each
reference section could describe one software command.

An <rsect> consists of:

• Required heading

• Optional introductory text

• Optional reference subsections (<rsub>)

Each <rsect> section can have multiple <rsub> sections. Each <rsub> element must have a
heading. A cross–reference to a reference subsection is not allowed.

The topic tree includes <rsect> headings but excludes <rsub> headings.

End tags (for either <rsect> or <rsub>) are not required.

Example
The following markup illustrates the use of this element:

<rsect>purge

 .
 .

102 CDE Help System Author’s and Programmer’s Guide

 .
<rsub>Syntax

purge filename

<rsub>Example

purge file01

<rsub>Related Commands

delete

See Also
• “<chapter> ”

• “<s1>…<s9> ”

<s1>…<s9>
Subsection (<s1>, <s2>, ... , <s9>)

Starts a topic in the hierarchy.

Syntax
<sn [id=name]>heading

topic text...

Where n is the level number (1, 2,…, or 9).

Topics entered with <chapter> can have subtopics entered with <s1>,
<s1> topics can have <s2> subtopics, and so on. You cannot skip a level.

The heading for a section can be on the same line as the <sn> tag or on the next line; a
heading is required. Text within a section is optional.

The end tag is usually omitted, but in some instances the end tag may be necessary. For
example, when a section is followed by an <rsect> element that is on the same level, an end
tag for the section is required. Without the end tag, the <rsect> element would be
considered a subsection of the section preceding it.

Examples
• The following illustrates a three–level hierarchy within a topic.

<chapter>Running the Processor
topic text...

<s1>Getting Started
To run the program, type in the usercode and your password.

<s1>Customizing
You may now set up this conversion program to change your computer from
beige to red.

<s2>Configuration
Use either the disk drive or the tape drive to archive your files.

103CDE Help System Author’s and Programmer’s Guide

<s3>Disk Drive Advantages
See data sheet for specifications.

<s3>Tape Drive Advantages
See data sheet for specifications.

<s2>Support
If you really need help, call technical support.

• In the following markup, a section end tag (<\s1>) is used to make the <rsect> section be
at the same level in the hierarchy.

<s1> first–level heading
text

<s1> first–level heading
text
<\s1>
<rsect> first–level heading
text

In contrast, leaving out the end tag causes the <rsect> section to
become a subtopic of the second <s1> section:

<s1> first–level heading
text

<s1> first–level heading
text

<rsect> second– level heading
text

See Also
• “<chapter> ”

• “<head> ”

• “<rsect> ”

<sub>
Subscript

Creates a subscript character.

Syntax
<sub>character to subscript<\sub>

Or:

__text__

The shorthand form uses two _ _ (underscore) characters before and after the characters to
subscript.

Example
The following markup:

<p>The chemical element H<sub>2<\sub>O contains

104 CDE Help System Author’s and Programmer’s Guide

two hydrogen molecules.

produces the following output:

The chemical element H2O contains two hydrogen molecules.

See Also
• “<super>”

<super>
Superscript

Creates a superscript character.

Syntax
<super>character to superscript<\super>

Or:

^^text^^

The shorthand form uses two ^^ (caret) characters before and after the characters to
superscript.

Example
The following markup:

<p>The answer to the problem is 2<super>8<\super>.

produces this output:

The answer to the problem is 2 8 .

See Also
• “<sub>”

<term>
Glossary term

Writes a newly introduced term in a special font and establishes a hyperlink to its definition
in the glossary.

Syntax
<term baseform [gloss | nogloss]>text<\term>

Or:

<term baseform [gloss | nogloss]|text|

Or:

++text++

Where:

105CDE Help System Author’s and Programmer’s Guide

baseform The form of the term as it appears in the glossary if it is not the same as
used in the text. This difference can occur, for example, when the term is
used in the text in its plural form but appears in the glossary in its singular
form. If the term includes spaces or special characters, put the baseform
string in quotes.

gloss Default. Requests that HelpTag verify that the term is in the glossary.

nogloss Omits the term from the glossary; however, the term is formatted in a bold
font.

The shorthand form uses two ++ (plus signs) before and after the glossary term.

Note: If your help volume does not include a glossary, use the nogloss parameter.

When HelpTag processes the help volume, warning messages are issued to indicate
glossary terms that were not marked with the nogloss parameter and do not have
corresponding definitions in the glossary.

Tagging a term with the <term> element automatically creates a hyperlink to the glossary. If
there is no glossary, the link will not work.

A <\term> end tag is required if the long form is used.

Example
The following markup puts ”structural elements” in a special font (boldface with a dotted
underscore) to indicate it is a glossary term and creates a hyperlink to the glossary. Because
the glossary entry contains a space, the text is in quotes. The plural form appears in the
text. HelpTag checks for the singular form in the glossary and reports an error if it is not
found.

SGML views a document as a hierarchy

of <term ”structural element”|structural elements|.

See Also
• “<glossary> ”

• “<dterm>”

<title>
Help volume title

Specifies the title of the help volume.

Syntax
<metainfo>

<title>help volume title

The <title> element is an optional element in the <metainfo> (meta information) section. It is
recommended, however, because the title provides the volume name displayed in the help
dialog boxes.

The <title> follows immediately after the <metainfo> tag. Because the title of the
volume may be displayed by other applications (information viewers, for example) that may
not be able to format the title, you should use only plain text within the title.

The <\title> end tag is not required.

106 CDE Help System Author’s and Programmer’s Guide

Example
Here is a sample volume title:

<metainfo>

<title> The Super Hyperlink User’s Guide

See Also
• “<metainfo> ”

<user>
User’s response

Indicates the user’s response to a computer prompt.

Syntax
<user>response<\user>

Or:

<user|response|

This element is used to distinguish user input from computer output in a computer dialog. It
is typically used within the <ex> element, where spaces and line breaks between the <user>
start tag and the <\user> end tag are significant.

If used within a paragraph, <user> text must not break across lines in your source file.

The <user> end tag is required if the long form is used.

Example
The following markup produces two different fonts, one to indicate what the computer
displays and another to indicate what the user types:

<ex>
Do you wish to continue? (Yes or No) <user>Yes<\user>
<\ex>

The output looks like this:

Do you wish to continue? (Yes or No) Yes

See Also
• “<computer> ”

• “<ex> ”

• “<vex> ”

<var>
Variable

Indicates a user–supplied variable in a command.

Syntax
<var>

107CDE Help System Author’s and Programmer’s Guide

text
<\var>

Or:

%%text%%

The <\var> end tag is required if the long form is used.

The shorthand form uses two %% (percent signs) before and after the text.

Example
These markups:

INPUT <var>filename<\var>

Or:

INPUT %%filename%%

produce:

INPUT filename

See Also
• “<ex> ”

• “<computer> ”

<vex>
Verbatim example

Indicates a verbatim example in which HelpTag elements are not interpreted as elements.

Syntax
<vex [number | nonumber][smaller | smallest]> text<\vex>

Where:

nonumber Default. Omits line numbers.

number Puts a line number at the beginning of each line.

smaller or smallest
Displays the example using smaller fonts.This makes long lines fit within a
narrower width.

Within a verbatim example, no HelpTag elements are recognized except <\, which is
assumed to be an end tag.

Use this element when you need to display markup tags or other characters that could
otherwise be interpreted as markup. Line breaks and spacing are preserved as they appear
in the source file.

The smaller and smallest fonts enable wide examples to fit within the margins.

Example
The following markup:

<vex>

108 CDE Help System Author’s and Programmer’s Guide

<!ELEMENT copyright – O (text)
 –memo | location | idx) >
<\vex>

produces this output:

See Also
• “<ex> ”

• “<image> ”

<warning>
Warning

Calls the user’s attention to a situation that could be dangerous to the user.

Syntax
<warning>

text

<\warning>

The text of the warning message is printed in boldface.

The default heading for the warning is ”Warning”. To specify a different heading, use the
<head> element.

To display a graphic with the warning, define WarningElementDefaultIconFile in an <!entity>
declaration. The default warning icon named warn icon.pm is located in the
/usr/dt/dthelp/dthelptag/icons directory.

The <\warning> end tag is required.

Example
• The following markup creates a warning message:

<warning>
Failure to follow these guidelines could result
in serious consequences.
<\warning>

• The following markup specifies a different heading for the warning message:

<warning><head>Danger!
Do not open the high–voltage compartment.
<\warning>

See Also
• “<note> ”

• “<caution> ”

• “<head> ”

109CDE Help System Author’s and Programmer’s Guide

<xref>
Cross–reference

Inserts text that identifies another location in the help volume and creates a hyperlink to that
location.

Syntax
<xref id >

Where:

id is the identifier of the topic or location that is being cross–referenced.

Cross–references are translated into chapter or section titles, heads, figure captions, list
items, or line numbers. The cross–reference text becomes a hyperlink that, when chosen by
a user, jumps to the cross–referenced location.

To create a cross–reference, an id must be defined in the element that you intend to refer to.
You use the id of the destination element as the id parameter in the <xref> tag. This creates
a hyperlink from the <xref> element to the destination element. The id must be spelled
exactly the same. Capitalization, however, is not significant.

The id parameter can appear with:

<chapter>

<s1>, <s2>, …<s9>
<otherfront>
<p>
<image>
<item>
<figure>
<location>
<rsect>

A cross–reference to an id that contains an underscore (such as ”_abstract” or
”_hometopic”) is not allowed. Instead, use the <link> element.

Examples
To refer a reader to a chapter for more information, use the chapter’s id to create a
reference. For instance, to refer to a chapter titled ”Window Management” whose id is
windowmgr, you would write, ”Refer to <xref windowmgr> for details.”

In your online help volume, the result would be: ”Refer to Window Management for details.”
The chapter title, ”Window Management”, is substituted for the id and is a hyperlink.

The following markup assigns an id named ”analyzer” to a section element:

<s1 id=analyzer>Logic Analyzers

Here is markup that contains a cross–reference to this topic:

The DX16500A logic analysis system, described in
<xref analyzer>, can be configured to a user’s needs.

After processing, the <xref> element would be replaced by ”Logic Analyzers” as shown in
Figure:

110 CDE Help System Author’s and Programmer’s Guide

The text ”Logic Analyzers” is a hyperlink that, when chosen by a user, jumps to the
cross–referenced help topic.

See Also
• “<chapter> ”

• “<!entity> ”

• “<figure> ”

• “<graphic> ”

• “<image> ”

• “<link> ”

• “<location> ”

• “<otherfront> ”

• “<p> ”

• “<rsect> ”

• “<s1>…<s9> ”

111CDE Help System Author’s and Programmer’s Guide

Summary of Special Character Entities

This section provides a list of special characters that can be used when writing a help topic.
The following special characters can be inserted into text by typing the associated entity
name in the position where the special character is to appear.

To use any of the entities whose description is marked with an * (asterisk), you must use the
helpchar.ent file (see see “ Including Special Characters”).

Typographical Symbols

Symbol Entity Name Description

� © Copyright symbol

 ® Registered symbol

 &tm; Trademark symbol

– &endash; En dash (short dash)

— &emdash; Em dash (long dash)

� • * Bullet

↵ &cr; Carriage return

… &ellipsis; Ellipsis (horizontal)

.… &pellipsis; Ellipsis (end–of–sentence)

� &vellipsis; Vertical ellipsis

’ &squote; Single quote

” &dquote; Double quote

� &vlblank; Vertical blank

() ∅ Empty (no text)

() &sigspace; Significant space

– &sigdash; Non line–breaking hyphen

§ &S; * Section

¶ &P; * Paragraph

Note: To use any of the entities whose description is marked with an * (asterisk), you
must use the helpchar.ent file (see “Including Special Characters”).

112 CDE Help System Author’s and Programmer’s Guide

Greek Characters

������ Entity Name Description

Lowercase Greek Letters

� α * Lowercase Greek Alpha

� β * Lowercase Greek Beta

� χ * Lowercase Greek Chi

� δ * Lowercase Greek Delta

� ϵ * Alternate lowercase Greek Epsilon

� φ * Lowercase Greek Phi

� ϕ * Open lowercase Greek Phi

	 γ * Lowercase Greek Gamma

 η * Lowercase Greek Eta

� ι * Lowercase Greek Iota

 κ * Lowercase Greek Kappa

� λ * Lowercase Greek Lambda

� μ * Lowercase Greek Mu

� ν * Lowercase Greek Nu

� π * Lowercase Greek Pi

� ϖ * Alternate lowercase Greek Pi
(or Omega)

� θ * Lowercase Greek Theta

� ϑ * Open lowercase Greek Theta

� ρ * Lowercase Greek Rho

� σ * Lowercase Greek Sigma

� &tsigma; * Lowercase Greek Sigma1

� τ * Lowercase Greek Tau

� υ * Lowercase Greek Upsilon

� ω * Lowercase Greek Omega

� ξ * Lowercase Greek Xi

� ψ * Lowercase Greek Psi

� ζ * Lowercase Greek Zeta

Uppercase Greek Letters

� &Udelta; * Uppercase Greek Delta

113CDE Help System Author’s and Programmer’s Guide

Greek Characters

���

� DescriptionEntity Name

� &Uphi; * Uppercase Greek Phi

� &Ugamma; * Uppercase Greek Gamma

� &Ulambda; * Uppercase Greek Lambda

� &Upi; * Uppercase Greek Pi

� &Utheta; * Uppercase Greek Theta

� &Usigma; * Uppercase Greek Sigma

� &Uupsilon; * Uppercase Greek Upsilon

� &Uomega; * Uppercase Greek Omega

Ξ &Uxi; * Uppercase Greek Xi

	 ϒ * Uppercase Greek Psi

Note: To use any of the entities whose description is marked with an * (asterisk), you
must use the helpchar.ent file (see “Including Special Characters”).

Math Symbols

Σψµβολ Entity Name Description

Basic Math Symbols

− − Minus

� ± Plus over minus

� ÷ Divide

� × Multiply

� ≤ Less than or equal to

� ≥ Greater than or equal to

� &neq; Not equal to

Advanced Math Symbols

2 &squared; * Squared

3 &cubed; * Cubed

1/4 &one–fourth; * One–fourth

1/2 &one–half; * One–half

3/4 &three–fourths; * Three–fourths

� &infty; * Infinity

� ≡ * Exactly equals

114 CDE Help System Author’s and Programmer’s Guide

Math Symbols

Σψµβολ DescriptionEntity Name

≠ ¬–eq; * Not equal to

≈ ≈ * Approximate sign

¬ &neg; * Not

∩ ∩ * Cap (Set intersection)

∪ ∪ * Cup (Set union)

∨ ∨ * Vee (Logical OR)

Λ ∧ * Wedge (Logical AND)

∈ ∈ * In

⊂ ⊂ * Proper subset

⊆ ⊆ * Subset

⊃ ⊃ * Proper superset

⊇ ⊇ * Superset

∀ ∀ * For all (Universal symbol)

∃ &exists; * There exists (Existential symbol)

∉ ¬–in; Not element

� &function; * Function symbol (or florin sign)

� ∠ * Angle

≅ ≅ * Congruent

∝ ∝ * Proportional to

⊥ ⊥ * Perpendicular to

� ċ * Centered dot

� ⊕ * Plus in circle

� ⊗ * Times in circle

� ø * Slash in circle (Empty set)

∂ &partial; * Partial differential delta

� ∑ * Summation (Uppercase Greek
Sigma)

� ∏ * Product (Uppercase Greek Pi)

115CDE Help System Author’s and Programmer’s Guide

Arrow Symbols

Symbol Entity Name Description

← ← * Left arrow

→ → * Right arrow

↑ ↑ * Up arrow

↓ ↓ * Down arrow

↔ ↔ * Left/right arrow

⇐ &bigleftarrow; * Big left arrow

⇒ &bigrightarrow; * Big right arrow

⇑ &biguparrow; * Big up arrow

⇓ &bigdownarrow; * Big down arrow

⇔ &bigleftrightarrow; * Big left/right arrow

Note: To use any of the entities whose description is marked with an * (asterisk), you
must use the helpchar.ent file (see “Including Special Characters”).

Miscellaneous Symbols

Symbol Entity Name Description

Current Date and Time

2/28/95 &date; Today’s date (when HelpTag is run)

09:50 &time; Current time (when HelpTag is run)

Currency Symbols

¢ ¢s; Cents

£ &sterling; Sterling

¥ ¥ Yen

Units

� ° Degrees

� &minutes; Minutes, prime, or feet

� &seconds; Seconds, double prime, or inches

AM &a.m.; AM

PM &p.m.; PM

116 CDE Help System Author’s and Programmer’s Guide

Miscellaneous Symbols

Symbol DescriptionEntity Name

Card Suits

� ♦ * Diamond suit

� ♥ * Heart suit

� ♠ * Spade suit

� ♣ * Club suit

Other Symbols

◊ ⋄ * Diamond

¿ &invert–question; Inverted question mark

¡ &invert exclamation; Inverted exclamation mark

¤ ¤cy; Currency

∴ ∴ Therefore

« &openanglequote; Open angle quotes

» &closeanglequote; Close angle quotes

ℵ ℵ * Hebrew Aleph

� ∇ * Nabla (Inverted uppercase Greek
Delta)

� &surd; Radical segment, diagonal

℘ ℘ * Weierstraussain symbol

ℜ ℜ * Fraktur R

ℑ &im; * Fraktur I

Note: To use any of the entities whose description is marked with an * (asterisk), you
must use the helpchar.ent file (see “Including Special Characters”).

117CDE Help System Author’s and Programmer’s Guide

Command Summary

This section summarizes the command–line options available when the help commands are
run manually in a terminal window.

• Processing HelpTag Files (dthelptag)

• Displaying Help Topics (dthelpview)

• Generating a Browser Help Volume (dthelpgen)

Help System Commands
Desktop actions and data types provided by the Help System enable you to compile and
view run–time help files by clicking a help file icon or choosing a menu item. However, if you
want to select particular command options, you must enter the command manually in a
terminal window or create new actions.

Help actions and data types are defined in two files, dthelp.dt and dthelptag.dt,
located in the /usr/dt/appconfig/types/ lang directory.

The commands summarized here are:

dthelptag Compiles HelpTag source files into a run–time file.

dthelpview Displays a help volume, help topic, text file, or man page.

dthelpgen Collects help family files into a new help volume, browser.hv, which
contains an entry for each family file.

Processing HelpTag Files (dthelptag)
The HelpTag software, invoked with the dthelptag command, compiles your HelpTag source
files into a run–time help file. You run dthelptag in the directory where your volume.htg file is
located.

Command Syntax
dthelptag [command–options] volume [parser–options]

Where command–options are options entered before the volume name and parser–options
are options entered after the volume name.

Command Options
–clean Removes all files generated from any previous run of HelpTag for the given

volume.

–shortnames Causes the names of all generated files to be limited to a maximum of eight
characters for the base name and three characters for the extension. This
allows run–time help files to be moved to systems where longer names may
not be supported.

–verbose Displays the progress of the dthelptag command and displays any parser
errors that occur. Parser errors are also saved in a file named volume.err.

–formal Uses the formal parser to interpret help files tagged with SGML–compliant
markup. If not specified, dthelptag assumes the input file contains
shorthand markup.

118 CDE Help System Author’s and Programmer’s Guide

Because there are two types of markup—shorthand and formal—it is recommended to
distinguish the types by using a file extension. Use.htg for shorthand markup and use.ctg
for formal markup.

Parser Options
Parser options, which are entered after the volume name, are passed directly to the parser,
which is the part of the HelpTag software that converts your marked–up files into a run–time
file.

These options can be applied in the following ways:

• Entered on the command line after the volume name

• Listed in a file named helptag.opt located in the current directory

• Listed in a file named volume.opt in the current directory

• Set using the DTTAGOPT environment variable

Options entered on the command line override those options that may have also been set
using a different method.

onerror Specifies whether the dthelptag command should continue if a parser error
is encountered. The default is onerror=stop, which causes the command to
stop even if one parser error is encountered. If you specify onerror=go,
processing will continue, but the created run–time help file may not work
properly.

charset Specifies which character set was used to author the text files. The correct
character set name is needed to ensure that the help topics are displayed in
the proper font. The default is charset=ISO–8859–1. You can also specify a
character set within your help volume by declaring an entity named
LanguageElementDefaultCharset. The
/usr/dt/dthelp/dthelptag/helplang.ent file includes this entity
declaration. See “Native Language Support” for a list of supported
character sets.

search Adds another directory to the list of directories that are searched to find
referenced file entities. To specify multiple directories, use multiple
search=directory options. If no search options are used, only the current
directory is searched.

clearsearch Ignores the list of search directories. This option is useful in the command
line to override search options specified in the helptag.opt file.

memo Causes author’s memos (which are entered using the <memo> element) to
be included. The default is nomemo, which causes HelpTag to ignore
memos.

nomemo Causes HelpTag to ignore author’s memos (which are entered with the
<memo> element). This is the default.

See Also
• see “Creating Run–Time Help Files”

• see “Creating an Installation Package”

• see “Viewing a Help Volume”

• dthelptag (1) man page

119CDE Help System Author’s and Programmer’s Guide

Displaying Help Topics (dthelpview)
The dthelpview command can be used to display a help volume, individual help topic, text
file, or man page.

Command Syntax
The various ways to invoke Helpview are:

• dthelpview –helpVolume volume [–locationId id]

• dthelpview –man

• dthelpview –manPage man

• dthelpview –file filename

Where:

–helpVolume volume
Specifies the name of the volume.sdl file you want to view. A path name is
not required unless the volume is not in the current directory and the
volume has not been registered.

–locationId id Specifies an ID. dthelpview displays the topic that contains id . If you do
not specify an ID, Helpview uses _hometopic by default.

–man Displays a dialog that prompts for a man page to view, then displays the
requested man page.

–manPage manSpecifies that a particular man page be displayed.

–file filename Specifies that a particular text file be displayed.

The default volume and id can be set in dthelpview’s app–defaults file,
/usr/dt/app–defaults/C/Dthelpview.

See Also
• “Registering Your Application and Its Help”

• “Viewing a Help Volume”

• dthelpview (1) man page

Generating a Browser Help Volume (dthelpgen)
The dthelpgen utility creates a special help volume that enables users to display help
volumes registered on their system using the Front Panel Help Viewer. When a user initially
clicks the Help Viewer control in the Front Panel, dthelpgen is run automatically. It locates
help family files by searching the help search path directories (local or networked), and then
creates a browser volume (browser.hv) in the user’s
HomeDirectory/.dt/help/$DTUSERSESSION directory. Once built, the volume is updated in
response to any of these actions:

• Add, remove, or modify family files or help volumes

• Change the LANG environment variable

• Invoke the ReloadApps action

• Run dthelpgen manually in a terminal window

120 CDE Help System Author’s and Programmer’s Guide

The browser volume is displayed by clicking the Help Viewer control in the Front Panel. Or,
you can manually run dthelpview and supply the browser volume name as shown in this
command line:

dthelpview –h browser.hv

Command Syntax
dthelpgen –dir [options]

Where:

–dir Specifies the directory in which to place the browser volume and
intermediate files. This is a required parameter.

Options
–generate Specifies that a new browser help volume should be created even if the

family files and help volumes on the system have not been modified.

–file basename Specifies the name of the help volume and any intermediate files generated
by dthelpgen. The default name is browser.hv.

–lang Specifies which language directories to search for help families and help
volumes. If the –lang option is set, it takes precedence over the current
value of the LANG environment variable.

Note: If you run dthelpgen while the browser volume is displayed in a help window, you
should close the window, then reopen the browser volume.

See Also
• “Registering Your Application and Its Help”

• dthelpgen(1) man page

121CDE Help System Author’s and Programmer’s Guide

Reading the HelpTag Document Type Definition

This section explains how to read the HelpTag 1.3 Document Type Definition (DTD) and how
to use it to create fully compliant Standard Generalized Markup Language (SGML) help files.

• Document Type Definition

• DTD Components

• Formal Markup

• Processing Formal Markup

Document Type Definition
A Document Type Definition (DTD) defines a set of elements to create a structured (or
hierarchical) document. The DTD specifies the syntax for each element and governs how
and where elements can be used in a document.

Helptag 1.3 DTD
The Helptag 1.3 DTD tag set and its associated rules are referred to as formal markup. The
DTD conforms to the Standard Generalized Markup Language (SGML) ISO specification
8879:1986. This means that you can use formal markup to create help files that are SGML
compliant.

Appendix A contains the complete DTD specification. The DTD is also available in the
Developer’s Toolkit. It is located in the /usr/dt/dthelp/dthelptag/dtd directory and is
named helptag.dtd.

See Also
• dthelptagdtd(4)man page

DTD Components
The DTD defines each of the HelpTag elements described in previous chapters in a
technical notation. This section introduces some key terms and explains how to read the
syntax of the element notations. It does not attempt to fully describe each section of the
DTD.

Element Declarations
The DTD defines each element in an element declaration. The declaration uses a precise
notation to describe an element, its required components, and any elements it can or cannot
contain. An element may also have characteristics defined in an attribute declaration, which
is discussed in the section “Attribute List Declarations”.

The syntax of an element declaration is:

<ELEMENT element_type minimization (content model) >

Where:

element_ type Specifies the element name, which is also used as the tag name. For
example, the tag for the element type head is <head>.

122 CDE Help System Author’s and Programmer’s Guide

minimization A two–character entry that indicates whether a start or an end tag is
required. The first character represents the start tag; the second character
represents the end tag. A space separates the two characters. The letter o
means that the tag is optional. A – (minus sign) indicates the tag is
required. For example, an entry like this, – – , indicates that the element
requires both start and end tags. The DTD for Helptag 1.3 requires start and
end tags for every element.

content model Specifies a list of the required and optional elements that the element type
can contain. It defines the sequence of elements and, if applicable, the
number of occurrences that may occur.

The content model uses these notations:

| A vertical bar represents “or”.

+ Element must appear at least once. It can be repeated.

* Element can appear zero or more times.

? Element can appear zero or one time.

, A comma describes sequence, that is, the element type must be
followed by the element specified after the comma.

+ (element_ type(s))
The + (plus sign) indicates that the listed element or elements can be used
within the element type or within any of the elements it contains. It is called
an inclusion. Parentheses are used to enclose one or more elements.

– (element_ type(s))
A – (minus sign) indicates that the listed element or elements cannot be
used within this element, or within any of the elements it contains. It is
called an exclusion. Parentheses are used to enclose one or more
elements.

Examples
Each example contains a word description for the element declaration provided. Required
start and end tags are assumed.

• A chapter requires a <chaphead> followed by text. A chapter can contain zero or more
s1 elements followed by zero or more rsect elements.

<!ELEMENT chapter – – (chaphead, text, (s1*, rsect*)) >

• A chaphead requires a head followed by an optional abbrev. A chaphead cannot contain
these elements: memo,location, or idx.

<!ELEMENT chaphead – – (head, abbrev?)
 –(memo | location | idx) >

• The paragraph element requires a start tag (–) and an end tag (–). It can contain an
optional head (?) followed by the partext element. newline elements can be used within
p or any of the elements it contains.

<!ELEMENT p – – (head?, partext) +(newline) >

• A note contains text. It can have an optional head. A note cannot contain these elements:
note, caution, or warning.

<!ELEMENT note – – (head?, text)
 –(note | caution | warning) >

• A list may contain an optional head. It requires at least one item, which can be repeated.

123CDE Help System Author’s and Programmer’s Guide

<!ELEMENT list – – (head?, item+) >

• The book element declaration uses an exclusion to specify that it cannot contain another
book element.

<!ELEMENT book – – (partext) –(book) >

Element Declaration Keywords
Some elements include a keyword in the element declaration that describes the data content
of the element. Three keywords appear in the DTD: EMPTY, CDATA, and #PCDATA.

EMPTY Specifies that the element has no data content that will be displayed in the
online information. newline and xref elements are examples.

CDATA Represents “character data”; that is, the data content of the element is not
recognized as markup.

#PCDATA Represents “parsed character data”; that is, the data content may include
both text and markup characters that the Help System parser interprets
accordingly.

Attribute List Declarations
An attribute list declares additional properties that further describe an element. An attribute
list declaration has the syntax:

<!ATTLIST element_type attribute_values default_value>

For example, a list element has four attributes: type, ordertype, spacing, and continue.
Values for each type are declared. The last column shows the default values. Because only
one value exists for the continue attribute, a default value is omitted.

<!ATTLIST list type (order

 bullet
 plain
 check) bullet

 ordertype (ualpha
 lalpha
 arabic
 uroman
 lroman) arabic

 spacing (tight
 loose) tight

 continue (continue) #IMPLIED >

This markup creates a numbered list (uppercase alphabet) that supplies extra spacing
between list items.

<list order ualpha loose>

 <item>
 <text>
 <p>
 <partext>Introducing the Front Panel></partext>
 </p>
 </text>
 </item>

124 CDE Help System Author’s and Programmer’s Guide

Formal Markup
Using a structured editor is the best approach for creating formal markup. After learning the
basic set of elements, an author can get started. This is done by choosing elements from a
menu. In response, the structured editor generates all of the tags required for each element.
In addition, the application verifies that the structural framework being created conforms to
the Document Type Definition.

See the section “Write Help Topics with HelpTag” for a description of shorthand and formal
markup, and structured editors.

Formal Markup Caveats
Shorthand and formal markup share a common set of elements, such as chapter, section,
head, list, paragraph, and so forth. However, formal markup differs from shorthand markup
in these important ways:

• Every element requires a start and an end tag.

• Tags for each subcomponent of an element must be entered.

• The / (forward slash) is the end tag delimiter in formal markup. End tags use this format,
</tagname>.

• Entity declarations use the SYSTEM parameter instead of the FILE parameter used in
shorthand declarations.

Explicit Start and End Tags
Each element, its component parts, and elements it contains must be explicitly tagged. For
example, here is the formal markup for a chapter head. To read this, and other markup
examples easily, tags are indented. Indentation is not required in actual markup.

<chaphead>

 <head>
 <partext>Front Panel Help</partext>
 </head>
</chaphead>

Notice the additional tags, <head> and <partext>; these are subcomponents of the
<chaphead> element. Each of these elements requires an explicit start and end tag.

Explicit Hierarchy of Elements
Each element declaration contributes to a set of rules that governs how and where elements
can be used. Because elements contain other elements, which may contain other elements,
a document is a hierarchy of elements. At the top level, <helpvolume> is a container for
every other element.

To decide what markup is necessary to create a help topic, you need to become familiar with
the rules. For example, suppose you want to create a chapter. First, look at the declaration
for chapter listed below. It specifies that a chaphead is required. Next, look at the rules for
chaphead. It, in turn, requires a head. Consequently, look at the declaration for head, and
continue until you have reached the last nested element—in this case, partext. Until you are
familiar with the elements you commonly use, this approach will help you enter markup
correctly.

<!ELEMENT chapter – – (chaphead, text?, (s1*, rsect*)) >

125CDE Help System Author’s and Programmer’s Guide

<!ELEMENT chaphead – – (head, abbrev?)
 –(memo | location | idx | footnote) >

<!ELEMENT head – – (partext)
 –(memo | location | idx)>

<!ELEMENT partext – – ((#PCDATA . . .))>

Using a structured editor minimizes what an author needs to know about the DTD. The
editor application “reads” the DTD and creates each element’s required tags, many of which
are intermediate structural tags.

Example
This formal markup sample is an excerpt from the desktop Text Editor help volume. To view
the corresponding online information, choose the Help Viewer in the Front Panel. Select
Common Desktop Environment and then choose Text Editor Help from the listed volumes. In
the Text Editor volume, choose Text Editor Tasks and then To Open an Existing Document.

Indentation is used in this example to make it easier to read the text and corresponding
element tags.

<s2 id=”TOOPENANEXISTINGDOCUMENT”>

<chaphead><head>

<partext>To Open an Existing Document</partext>

 </head></chaphead>

<text>

<p>

<partext>You can use Text Editor or File Manager to open an
existing document.
</partext></p>

<idx><indexprimary>

<partext>document</partext></indexprimary>

 <indexsub>

<partext>opening</partext></indexsub></idx>

<idx><indexprimary>

<partext>opening</partext></indexprimary>

 <indexsub>

<partext>existing document</partext></indexsub></idx>

<procedure>

<chaphead><head>

<partext>From Text Editor</partext>

 </head></chaphead>

<text>

<list type=”ORDER”>

<item><text><p>

<partext>Choose Open from the File menu.</partext></p>

<p>

126 CDE Help System Author’s and Programmer’s Guide

<partext>The Open a File dialog box lists files and folders on
your system.You can browse the documents listed, or change to a
new folder to locate other files on your system.</partext>

 </p></text></item>

<item><text><p>

<partext>Select the document you want to open in the Files list
or type the file name in the Open a File field.</partext></p>

<p>

<partext><emph><partext>Or,</partext></emph> if the document is
not in the current folder, first change to the folder that
contains your document. Then choose a name in the Folders list or
type the path name of the folder you wish to change to in the
Enter path or folder name field.</partext></p></text></item>

<item><text><p>

<partext>Press Return or click OK.
</partext></p></text></item></list>

<figure tonumber=”NONUMBER” entity=”TEXTEDITOROPENFILE”>

</figure></text></procedure>

<procedure><chaphead><head>

<partext>From File Manager</partext>

 </head></chaphead>

<idx><indexprimary>

<partext>opening</partext></indexprimary>

 <indexsub>

<partext>document from File Manager</partext></indexsub></idx>

<idx><indexprimary>

<partext>document</partext></indexprimary>

 <indexsub>

<partext>opening from File Manager</partext></indexsub></idx>

<idx><indexprimary>

<partext>File Manager</partext></indexprimary>

 <indexsub>

<partext>opening document</partext></indexsub></idx>

<text>

<list type=”BULLET”>

<item><text><p>

<partext>Display the document’s file icon in a File Manager
window.</partext>

 </p></text></item>

<item><text><p>

127CDE Help System Author’s and Programmer’s Guide

<partext>Do <emph><partext>one</partext></emph> of the
following:</partext></p>

<list type=”BULLET”>

<item><text><p>

<partext>Double–click the document’s file icon.</partext>

 </p></text></item>

<item><text><p>

<partext>Select the document, then choose Open from the Selected
menu.</partext>

 </p></text></item>

<item><text><p>

<partext>Drag the document to Text Editor’s control in the Front
Panel.</partext>

 </p></text></item></list></text>

 </item></list><text> </procedure>

<procedure><chaphead><head>

<partext>See Also</partext>

 </head></chaphead>

<text>

<list type=”BULLET” spacing=”TIGHT”>

<item><text><p>

<partext><xref id=”ENTERINGANDEDITINGTEXT”></partext>

 </p></text></item>

<item><text><p>

<partext><xref id=”TOSAVEADOCUMENTTOTHECURRENTFILE”></partext>

 </p></text></item>

<item><text><p>

<partext><xref id=”TABLEOFCONTENTS”></partext>

 </p></text></item></list></text>

 </procedure></text></s2>

File Entity Declarations
To declare a file entity in formal markup, use this syntax:

<!entity entityname SYSTEM “filename”>

Where entityname is the name of the entity and filename is the name of the file. The
keyword SYSTEM is required.

Note: To use entity declarations previously created for shorthand markup, you must
replace the FILE parameter with SYSTEM.

Example
Here are the entity declarations for a help volume that consists of three text files and
contains a graphic image.

128 CDE Help System Author’s and Programmer’s Guide

<!entity MetaInformation SYSTEM “metainfo>”

<!entity BasicTasks SYSTEM “basics”>
<!entity AdvancedFeatures SYSTEM “advanced”>
<!entity process_diagram SYSTEM “process.tif”>

Entities are referenced in formal markup exactly as they are in shorthand markup.

Processing Formal Markup
When you process formal markup using dthelptag, you must use the –formal
command–line option. For example, to process a formal markup file named Icons.ctg in
verbose mode, enter this command:

dthelptag –verbose –formal Icons.ctg

Note: The command option specifies the type of markup in the input file. The run–time file
created by running dthelptag is always volume.sdl. The online format is identical
whether you used shorthand or formal markup.

129CDE Help System Author’s and Programmer’s Guide

Part 3 —The Programmer’s Job

Creating and Managing Help Dialog Boxes

This section describes the Help dialog widgets and how to create them.

• Help Dialog Boxes

• Genearl Help Dialog

• To Create a General Help Dialog

• Quick Help Dialog

• To Create a Quick Help Dialog

• Summary of Application Program Interface

Help Dialog Boxes
For application programmers, the Help System provides a programming library that adds
help dialog boxes to any OSF/Motif application. The library provides two types of help dialog
boxes:

• General help dialogs have a menu bar, a topic tree, and a help topic display area. The
topic tree lists the help volume’s topics and subtopics. Users use the topic tree to select
topics to view, to browse available topics, and to locate where they are in the help
volume.

• Quick help dialogs contain a topic display area and one or more dialog buttons at the
bottom.

Standard Xt Paradigm
In terms of programming, you interact with the help dialogs the same as you do with any
other OSF/Motif widgets in your applications. The two types of help dialog boxes are defined
as two new widget classes: DtHelpDialog and DtHelpQuickDialog.

Nearly every attribute of the help windows—including the volume name and topic ID—are
manipulated as widget resources. For instance, to display a new topic, you just execute an
XtSetValues() call to set the DtNhelpVolume, DtNlocationId, and Dt NhelpType
resources. For more information, refer to “Displaying Help Topics”.

Note: Integrating the Help System into an application requires a working knowledge of the
C programming language, the OSF/Motif programmer’s toolkit, and the Xt Intrinsics
toolkit.

General Help Dialog
A general help dialog has two display areas: the topic tree and topic display area. The topic
tree provides a scrollable list of help topics. The home topic title is always the first item.
When a user chooses a title, an arrow (fi) marks the title and its help information is displayed
in the topic display area. Figure shows the topic tree and topic display area of a general help
window. The current topic, “To select a palette”, is displayed.

130 CDE Help System Author’s and Programmer’s Guide

The general help dialog includes three dialog buttons: Backtrack, History, and Index. These
commands are also available in the Help menus. For an overview of the Help dialogs and
the graphical user interface, refer to the section, “ Help User Interface”.

General help dialog

To Create a General Help Dialog
1. Include the appropriate header files:

#include <Help.h>
#include <HelpDialog.h>

2. Create an instance of the general help dialog widget:

• Use the DtCreateHelpDialog() convenience function.

Or, use the XtCreateManagedWidget() function.

3. Add a callback for handling hyperlink events that occur within the dialog. (For more
information, see “Responding to Hyperlink Events”.)

4. Add a close callback for handling the Close command.

Example
The following code segment creates a general help dialog (as a child of parent) using the
convenience function. The dialog is left unmanaged—presumably it is managed elsewhere
in the application when a help request is made.

Widget mainHelpDialog, moreButton, helpButton;

ac = 0;
XtSetArg (al[ac], XmNtitle, ”My Application – Help”); ac++;
XtSetArg (al[ac], DtNhelpVolume, ”My Help Volume”); ac++;
XtSetArg (al[ac], DtNlocationId, ”Getting Started”); ac++;
XtSetArg (al[ac], DtNhelpType, ”DtHELP_TYPE_TOPIC”); ac++;

mainHelpDialog =
 DtCreateHelpDialog (parent , ”mainHelpDialog”, al, ac);

The following two calls add the hyperlink and close callbacks to the dialog. Presumably, the
functions HyperlinkCB() and CloseHelpCB() are declared elsewhere in the application.

XtAddCallback (mainHelpDialog, DtNhyperLinkCallback,

131CDE Help System Author’s and Programmer’s Guide

HyperlinkCB, (XtPointer)NULL);
XtAddCallback (mainHelpDialog, DtNcloseCallback,
 CloseHelpCB, (XtPointer)NULL);

See Also
• “Providing Help on Help”

• “To Enable the Application–Configured Button”

• DtCreateHelpDialog(3) man page

• DtHelpDialog(3) man page

Quick Help Dialog
The quick help dialog box is designed to help you meet the first objective of online help: Get
the user back on task as quickly and successfully as possible. This simple user interface
helps keep the user focused on the information. The information should be useful enough
that the user dismisses the dialog after reading it and continues working.

Quick help dialog with four standard buttons

The quick help dialog has five buttons, four of which are managed. The remaining dialog
button is configurable, so this button can be used for anything. However, its intended
purpose is to provide a path to more help in one of these two ways:

• Let the user ask for more detailed information. In this case, the default button label (More)
is appropriate. This is called progressive disclosure.

• Let the user open a general help dialog for general browsing of the application’s help
volume. In this case, Browse… is the most appropriate button label.

The Developer’s toolkit includes a convenience function,
DtHelpQuickDialogGetChild(), for determining the widget ID for any of the quick help
dialog buttons.

To Create a Quick Help Dialog
1. Include the appropriate header files:

#include <Help.h>
#include <HelpQuickD.h>

2. Create an instance of the quick help dialog widget:

• Use the DtCreateHelpQuickDialog() convenience function.

Or, use the XtCreateManagedWidget() function.

132 CDE Help System Author’s and Programmer’s Guide

3. Add a callback for handling hyperlink events that occur within the dialog. (For more
information, see “Responding to Hyperlink Events”.)

4. Add a close callback for handling the OK button.

5. Configure the dialog buttons that you want to use:

• If you intend to use the application–configured button, manage it and add an activate
callback.

• If you want to disallow printing, unmanage the Print button.

• Manage the Help button and add a help callback to the dialog to allow the user to get help
on help.

Example
The following code segment creates a quick help dialog (as a child of parent) using the
convenience function. The dialog is left unmanaged; presumably, it is managed elsewhere in
the application when a help request is made. In this example, the application–configured
button is enabled and used to request more help.

Widget quickHelpDialog, moreButton, helpButton;

ac = 0;
XtSetArg (al[ac], XmNtitle, ”My Application – Help”); ac++;
XtSetArg (al[ac], DtNhelpVolume, ”My Help Volume”); ac++;
XtSetArg (al[ac], DtNlocationId, ”Getting Started”); ac++;
XtSetArg (al[ac], DtNhelpType, ”DtHELP_TYPE_TOPIC”); ac++;

quickHelpDialog =
 DtCreateHelpQuickDialog (parent , ”quickHelpDialog”, al, ac);

The following two calls add the hyperlink and close callbacks to the dialog. Presumably, the
functions HyperlinkCB() and CloseHelpCB() are declared elsewhere in the application.

XtAddCallback (quickHelpDialog, DtNhyperLinkCallback,

HyperlinkCB, (XtPointer)NULL);

XtAddCallback (quickHelpDialog, DtNcloseCallback,
 CloseHelpCB, (XtPointer)NULL);

Here, the application–configured button is managed and assigned an activate callback that
invokes the application’s MoreHelpCB() function.

moreButton = DtHelpQuickDialogGetChild (quickHelpDialog,

DT_HELP_QUICK_MORE_BUTTON);
XtManageChild (moreButton);

XtAddCallback (moreButton, XmNactivateCallback,
 MoreHelpCB, (XtPointer)NULL);

To provide ”help on help,” the dialog’s Help button is managed and a help callback is added
to the dialog.

helpButton = DtHelpQuickDialogGetChild (quickHelpDialog,

DT_HELP_QUICK_HELP_BUTTON);
XtManageChild (helpButton);

XtAddCallback (quickHelpDialog,DtNhelpCallback,
 HelpRequestCB, USING_HELP);

133CDE Help System Author’s and Programmer’s Guide

Like other OSF/Motif dialogs, when you add a help callback to a quick help dialog, it is used
by both the F1 key and the Help button.

See Also
• “To Enable the Application–Configured Button”

• DtCreateHelpQuickDialog(3) man page

• DtHelpQuickDialog(3) man page

• DtHelpQuickDialogGetChild(3) man page

Summary of Application Program Interface
Related man pages for the Help System are:

• Functions for creating and working with dialogs:

DtHelp(5)
DtHelpDialog(5)
DtHelpQuickD(5)
DtCreateHelpDialog()
DtCreateHelpQUickDialog()
DtHelpQuickDialogGetChild()

• Function for implementing item help mode:

DtHelpReturnSelectedWidgetId()

• Function for specifying the message catalog for the Help library:

DtHelpSetCatalogName()

• Applications and actions for creating and viewing a help volume:

dthelptag(1)
dthelpview(1)
dthelpgen(1)
dthelpaction(5)
dtmanaction(5)

• Document Type Definitions:

dthelptagdtd(4)
dtsdldtd(4)

134 CDE Help System Author’s and Programmer’s Guide

Responding to Help Requests

This section explains how to display different types of help information by setting Help
Dialog widget resources.

• Requesting Help

• Displaying Help Topics

• To Display a Help Topic

• To Display a String of Text

• To Display a Text File

• To DIsplay a Man Page

• Enabling the Help Key (F1)

• Providing a Help Menu

• Supporting Item Help Mode

Requesting Help
When a user requests help while using your application, it’s the application’s responsibility to
determine what help topic should be displayed.

Context Sensitivity
Some help requests amount to an explicit request for specific information, such as help on
”version” (which usually displays the copyright topic). Other help requests, however, may
require some degree of context sensitivity. That is, some processing might be needed to
determine the appropriate help topic based on the user’s current context within the
application.

For instance, your application might test the status of certain modes or settings to determine
the appropriate help topic. Or, it might test the value of an input field and provide detailed
help if the value is not valid, and general help if the value is valid.

Entry Points
An entry point is a specific location within a help volume—usually the beginning of a
topic—that can be directly accessed by requesting help within the application.

From the author’s point of view, entry points are established by assigning IDs at the
appropriate places within the help volume. From the programmer’s point of view, entry
points are created by enabling the user to request help and using the appropriate ID when a
particular request is made.

There are four general ways for users to request help:

• Pressing the help key (which is F1 on most keyboards)

• Clicking the Help button in a dialog box

• Choosing a command from the application’s Help menu

• Choosing On Item help

135CDE Help System Author’s and Programmer’s Guide

Displaying Help Topics
When a help request is made, the application determines what help topic to display. It then
creates (if necessary) and manages a help dialog, and sets the appropriate resources to
display a help topic.

Most requests display help topics that are part of the application’s help volume. But, the
Help System’s help dialogs are also capable of displaying man pages, text files, and simple
text strings.

The Help System’s help dialogs are based exclusively on Xt Intrinsics and OSF/Motif
programming, so you change the values within a help dialog just like any other widget: by
setting resources.

The DtNhelpType resource determines what type of information is displayed. It can be set to
any of these values:

• DtHELP_TYPE_TOPIC for displaying normal help topics that are part of a help volume.
The volume is specified by setting the DtNhelpVolume resource; the topic is specified by
setting the DtNlocationId resource.

• DtHELP_TYPE_STRING for displaying a string supplied by the application. Automatic
word wrap is disabled, so line breaks are observed as specified in the string. The string is
specified by setting the DtNstringData resource.

• DtHELP_TYPE_DYNAMIC_STRING for displaying a string supplied by the application,
using word wrap to format the text. Line breaks within the string are used to separate
paragraphs. The string is specified by setting the DtNstringData resource.

• DtHELP_TYPE_FILE for displaying a text file. The name of the file to be displayed is
specified by setting the DtNhelpFile resource.

• DtHELP_TYPE_MAN_PAGE for displaying a manual reference page (man page) in a
help dialog. The man page to be displayed is specified by setting the DtNmanPage
resource.

These values are defined in the Help.h file.

See Also
• “Creating and Managing Help Dialog Boxes”

To Display a Help Topic
1. Create a help dialog.

2. Set the following resources for the help dialog:

DtNhelpType Set to DtHELP_TYPE_TOPIC.

DtNhelpVolumeSet to the volume name for your application.

DtNlocationId Set to the topic ID that you want to display.

You can also set other values for the dialog, such as its size and title.

3. Manage the dialog using XtManageChild().

Example
This program segment displays a topic with the ID getting–started in the volume MyVolume.

ac = 0;

136 CDE Help System Author’s and Programmer’s Guide

XtSetArg (al[ac], DtNhelpType, DtHELP_TYPE_TOPIC); ac++;
XtSetArg (al[ac], DtNhelpVolume, ”MyVolume”); ac++;
XtSetArg (al[ac], DtNlocationId, ”getting–started”); ac++;
XtSetArg (al[ac], DtNcolumns, 40); ac++;
XtSetArg (al[ac], DtNrows, 12); ac++;
XtSetValues (helpDialog, al, ac);
XtManageChild (helpDialog);

If the help volume MyVolume is not registered, then a complete path to the MyVolume.sdl
file is required for the value of DtNhelpVolume.

To Display a String of Text
1. Create a quick help dialog.

You can use a general help dialog to display string data, but this isn’t recommended
because most of its features do not apply to string data.

2. Set the following resources for the help dialog:

DtNhelpType Set to DtHELP_TYPE_DYNAMIC_STRING (if you want word wrap
enabled) or DtHELP_TYPE_STRING (if you want the line breaks within
the string to be maintained) .

DtNstringData Set to the string you want to display. A copy of the string is kept
internally, so you need not maintain your copy of it.

You can also set other values for the dialog, such as its size and title.

3. Manage the dialog using XtManageChild().

Example
This program segment displays a string stored in the variable descriptionString.

ac = 0;

XtSetArg (al[ac], DtNhelpType, DtHELP_TYPE_DYNAMIC_STRING);
ac++;
XtSetArg (al[ac], DtNstringData, (char *)descriptionString);
ac++;
XtSetValues (quickHelpDialog, al, ac);
XtManageChild (quickHelpDialog);

If the string is no longer needed within the application, the memory can be freed, because
the help dialog makes its own copy of the data.

XtFree (descriptionString);

To Display a Text File
1. Create a quick help dialog or retrieve one from your dialog cache.

You can use a general help dialog to display a text file, but this isn’t recommended
because most of its features are useful only for standard help topics.

2. Set the following resources for the help dialog:

DtNhelpType Set to DtHELP_TYPE_FILE..

DtNhelpFile Set to the file name you want to display. If the file is not in the
application’s current directory, provide a path to the file.

You can also set other values for the dialog, such as its size and title. In particular, you
might want to set the width to 80 columns, which is the standard width for text files.

137CDE Help System Author’s and Programmer’s Guide

3. Manage the dialog using XtManageChild().

Example
The following program segment displays a file named /tmp/printer.list. It also sets the size of
the dialog to better suit a text file.

ac = 0;

XtSetArg (al[ac], DtNhelpType, DtHELP_TYPE_FILE); ac++;
XtSetArg (al[ac], DtNhelpFile, ”/tmp/printer.list”); ac++;
XtSetArg (al[ac], DtNcolumns, 80); ac++;
XtSetArg (al[ac], DtNrows, 20); ac++;
XtSetValues (quickHelpDialog, al, ac);
XtManageChild (quickHelpDialog);

To Display a Man Page
1. Create a quick help dialog.

You can use a general help dialog to display a man page, but this isn’t recommended
because most of its features are useful only with standard help topics.

2. Set the following resources for the help dialog:

DtNhelpType Set to DtHELP_TYPE_MAN_PAGE.

DtNmanPage Set to the name of the man page. The value of this resource is passed
directly to the system man command. So, to specify a particular section
of a man page, precede the man page name by a section number, just
as you would if you were typing the man command conventionally.

You can also set other values for the dialog, such as its size and title.

3. Manage the dialog using XtManageChild().

Example
The following program segment displays the man page for the grep command. It also sets
the size of the dialog to better suit a man page.

ac = 0;

XtSetArg (al[ac], DtNhelpType, DtHELP_TYPE_MAN_PAGE); ac++;
XtSetArg (al[ac], DtNmanPage, ”grep”); ac++;
XtSetArg (al[ac], DtNcolumns, 80); ac++;
XtSetArg (al[ac], DtNrows, 20); ac++;
XtSetValues (quickHelpDialog, al, ac);
XtManageChild (quickHelpDialog);

Enabling the Help Key (F1)
The help key mechanism is a feature built into all OSF/Motif manager widgets and primitive
widgets. The help key is enabled by adding a help callback to the widget where you want the
help key active.

Within your application, you should add a help callback to each widget where you want a
unique entry point into help. The help callback mechanism automatically ”walks” up the
widget hierarchy (up to the shell widget) until it finds a widget with a help callback, then
invokes that callback.

138 CDE Help System Author’s and Programmer’s Guide

If you add a help callback to a manager widget, when the help key is pressed for any of its
children, the manager’s help callback is invoked (unless the child widget has a help callback
of its own).

To Add a Help Callback
• Use the XtAddCallback() function as follows:

XtAddCallback (
 Widget widget ,
 String DtNhelpCallback,
 XtCallbackProc HelpRequestCB ,
 XtPointer clientData);

Where:

widget The widget where you want to activate the help key.

HelpRequestCB() The function in your application that handles the help request when the
user presses the help key.

clientData The data you want passed to the HelpRequestCB() function. Typically,
this data identifies the topic to be displayed.

When the user presses the help key, the help callback is invoked for the widget with the
current keyboard focus. If that widget does not have a help callback, the help callback for its
nearest ancestor that does have a help callback is invoked.

If no help callbacks are found, nothing happens. Therefore, it is recommended that you add
a help callback to each shell in your application. This ensures that no user requests for help
are lost.

Adding a help callback to a dialog shell automatically enables the Help button on the dialog
to invoke the help callback.

Importance of Client Data
Specifying a unique value for clientData in each help callback you add saves you the trouble
of writing a separate function to process each help callback. Your application can have a
single callback procedure to process all help requests (see “To Add a Help Callback”).
Within the callback procedure, use the clientData to identify where the user requested help.
That is, each time you add a help callback, you should provide a unique value for clientData.

Example
The following example demonstrates one way to associate IDs with entry points. A
HelpEntryIds.h file is used to define a unique integer for each clientData value for each help
callback. Also defined are two ID strings for each widget: one for normal F1 help, the other
for item help mode (where the user picks a widget to get a description).

For this example, assume that the application’s user interface is just a main window with
three input fields: Name, Address, and Telephone Number. Here’s what the HelpEntryIds.h
file would contain:

#define HELP_volumeName ”MyVolume”

#define HELP_MainWindow 100
#define HELP_MainWindow_ID ”basic–tasks”
#define HELP_MainWindow_ITEM_ID ”main–window–desc”

#define HELP_NameField 101

139CDE Help System Author’s and Programmer’s Guide

#define HELP_NameField_ID ”specifying–a–name”
#define HELP_NameField_ITEM_ID ”name–field–desc”

#define HELP_AddressField 102
#define HELP_AddressField_ID ”specifying–an–address”
#define HELP_AddressField_ITEM_ID ”address–field–desc”

#define HELP_PhoneField 103
#define HELP_PhoneField_ID ”specifying–a–phone–no”
#define HELP_PhoneField_ITEM_ID ”phone–field–desc”

Within the part of the application that initially creates the widgets, a help callback is added to
each widget as follows:

XtAddCallback (mainWindow, DtNhelpCallback,

 HelpRequestCB, HELP_MainWindow);
XtAddCallback (nameField, DtNhelpCallback,
 HelpRequestCB, HELP_NameField);
XtAddCallback (addressField, DtNhelpCallback,
 HelpRequestCB, HELP_AddressField);
XtAddCallback (phoneField, DtNhelpCallback,
 HelpRequestCB, HELP_PhoneField);

Within the HelpRequestCB() function, the clientData parameter is used to dispatch the help
requests (through a switch() statement). Within each case, the value of a global flag
itemHelp is tested to see if the help callback was invoked by the F1 key (the flag is ”false”)
or by the user picking the widget in item help mode (the flag is ”true”).

XtCallbackProc HelpRequestCB (

 Widget w,
 XtPointer clientData,
 XtPointer callData)
{
 char *topicToDisplay;
 Boolean useQuickHelpDialog;
 /* Determine the topic ID for the given ‘ clientData.’ */
 switch ((int)clientData)
 {
 case HELP_MainWindow:
 useQuickHelpDialog = False;
 if (itemHelpFlag)
 topicToDisplay = HELP_MainWindow_ITEM_ID;
 else
 topicToDisplay = HELP_MainWindow_ID;
 break; case HELP_NameField:
 useQuickHelpDialog = True;
 if (itemHelpFlag)
 topicToDisplay = HELP_NameField_ITEM_ID;
 else
 topicToDisplay = HELP_NameField_ID;
 break; case HELP_AddressField:
 useQuickHelpDialog = True;
 if (itemHelpFlag)
 topicToDisplay = HELP_AddressField_ITEM_ID;
 else
 topicToDisplay = HELP_AddressField_ID;
 break; case HELP_PhoneField:
 useQuickHelpDialog = True;

140 CDE Help System Author’s and Programmer’s Guide

 if (itemHelpFlag)
 topicToDisplay = HELP_PhoneField_ITEM_ID;
 else
 topicToDisplay = HELP_PhoneField_ID;
 break; default:
 /* An unknown clientData was received. */
 /* Put your error handling code here. */
 return;
 break;
 }

 /* Display the topic. */
 ac = 0;
 XtSetArg (al[ac], DtNhelpType, DtHELP_TYPE_TOPIC); ac++;
 XtSetArg (al[ac], DtNhelpVolume, HELP_volumeName); ac++;
 XtSetArg (al[ac], DtNhelpType, topicToDisplay); ac++;
 if (useQuickHelpDialog)
 {
 XtSetValues (mainQuickHelpDialog, al, ac);
 XtManageChild (mainQuickHelpDialog);
 }
 else
 {
 XtSetValues (mainHelpDialog, al, ac);
 XtManageChild (mainHelpDialog);
 }
 /* Clear the ‘ item help’ flag. */
 itemHelpFlag = False;
 }

The preceding function assumes that the application uses two help dialogs for all help
requests (mainHelpDialog and mainQuickHelpDialog), and that those dialogs have already
been created. It also assumes that al and ac (used in assembling Xt argument lists) are
declared elsewhere.

Providing a Help Menu
The Style Guide and Certification Checklist recommends that each menu bar include a Help
menu. The Help menu may contain a variety of commands that let the user access different
types of online help for your application.

The most important commands include:

• Introduction displays the home topic of your application’s help, allowing the user to use
hyperlinks to navigate to any desired information.

• Using Help displays help on help. This is information that tells the user how to use the
Help System.

• Version displays your application’s version and copyright information. The copyright topic
(created using the <copyright> element) has the ID _copyright.

Additional commands may display help on special keyboard usage, application tasks,
reference, or tutorials. You should design your Help menu to best suit your application, while
staying within the guidelines and recommendations of the Style Guide and Certification
Checklist.

141CDE Help System Author’s and Programmer’s Guide

See Also
• “To Create a Home Topic” describes how authors create the home topic for a help

volume.

• “To Create a Meta Information Section” describes how authors create a copyright topic.

• “Providing Help on Help” describes how help on help is found and how to add it to your
application.

Supporting Item Help Mode
Some applications provide an On Item or Help Mode command in their Help menu. This
command temporarily redefines the mouse pointer as a ? (question mark) to prompt the
user to select an item on the screen. When an item is selected, the application is expected
to display a description of the item.

The convenience function, DtHelpReturnSelectedWidgetId(), changes the pointer to a
question mark and waits for the user to pick a widget. The ID of the selected widget is
returned. This function is similar to the XmTrackingLocate() function except that
DtHelpReturnSelectedWidgetId() returns NULL if the user presses Escape to cancel the
operation.

To display help on the selected item, your application can simply invoke the help callback for
the returned widget. This is equivalent to the user pressing F1 while using that widget.

If you want the application to differentiate between item help and F1 help, you can set a flag
before calling the widget’s help callback. The help callback procedure can then use that flag
to determine that the callback was invoked as a result of item help and alter its response
accordingly.

To Add Support for Item Help
1. Write a function that uses the DtHelpReturnSelectedWidgetId() function. Within this

function, invoke the help callback for the selected widget. In the following steps, this
function is called ProcessOnItemHelp(), but you can name it whatever you want.

2. Add to your Help menu a command button labeled On Item. Add an activate callback that
invokes your ProcessOnItemHelp() function.

3. Add a help callback to each widget in your application where you want item help to be
available.

If the selected widget does not have a help callback, the application should try its parent
widget. Similarly, if the parent does not have a help callback, the application should continue
to walk up the widget hierarchy until it finds a help callback.

Example
The following procedure is a sample ProcessOnItem Help() function that would be
invoked by choosing On Item from the Help menu.

void ProcessOnItemHelp(

 Widget widget)
{
 /* Declare a variable for the selected widget. */

 Widget selWidget=NULL;
 int status=DtHELP_SELECT_ERROR;

142 CDE Help System Author’s and Programmer’s Guide

 /* Get an application shell widget from our widget hierarchy to
 * pass into DtHelpReturnSelectedWidgetId().
 */

 while (!XtIsSubclass(widget, applicationShellWidgetClass))
 widget = XtParent(widget);

 status = DtHelpReturnSelectedWidgetId(widget, NULL,
&selWidget);

 switch ((int)status)
 {
 case DtHELP_SELECT_ERROR:
 printf(“Selection Error, cannot continue\n”);

 break;

 case DtHELP_SELECT_VALID:
 /* We have a valid widget selection, now let’s look for a registered help
 * callback to invoke.
 */

 while (selWidget != NULL)
 {
 if ((XtHasCallbacks(selWidget, XmNhelpCallback)
 == XtCallbackHasSome))
 {
 /* Found a help callback, so just call it */

 XtCallCallbacks((Widget)selWidget,
 XmNhelpCallback,NULL);
 break;
 }

 else

 /* No help callback on current widget, so try the widget’s parent */

 selWidget = XtParent(selWidget);
 }

 break;
 case DtHELP_SELECT_ABORT:
 printf(“Selection Aborted by user.\n”);

 break;

 case DtHELP_SELECT_INVALID:
 printf(“You must select a component within your app.\n”);

 break;
 }
}

143CDE Help System Author’s and Programmer’s Guide

Handling Events in Help Dialogs

This section describes several Help dialog events that an application must be equipped to
handle.

• Supporting Help Dialog Events

• Responding to Hyperlink Events

• Detecting When Help Dialogs Are Dismissed

• Using the Application–Configured Button

Supporting Help Dialog Events
Like other widgets within your application, help windows have some behavior that must be
supported by the application.

Hyperlink Events
Most standard hyperlink events are handled internally by the Help System. However, there
are four types of hyperlinks that your application is responsible for handling:

• Jump–new–view hyperlinks—Your application must create a new help dialog to honor the
author’s request for a topic to be displayed in a new help window.

• Man page links—Your application must create a new quick help dialog (or get one from
your cache) to display a man page. Typically, the size of man page windows is different
from all other help windows.

• Application–defined links—Your application must interpret the data associated with these
links. Application–defined links exist only if you and the author have collaborated to
create them.

• Text file links—Your application must create a quick help dialog (or get one from you
cache) to display the text file.

When Dialogs Are Dismissed
When the user closes a help dialog, your application needs to know so it can store the
dialog in its cache, or destroy it. The general help dialog supports a help closed callback. To
detect when a quick dialog is dismissed, add a callback to its Close button.

Quick Help Buttons
The behavior for some of the buttons in quick help dialogs must be handled by your
application. These buttons can be managed and unmanaged as needed. You add behavior
just like any other push button: using an activate callback.

See Also
• “Creating Hyperlinks” describes the types of links supported by the Help System and

explains how to create them.

144 CDE Help System Author’s and Programmer’s Guide

Responding to Hyperlink Events
Your application needs to provide support only for the types of hyperlinks used within the
help volume to be displayed. In general, it is recommended that you provide support for all
link types.

For your application to be notified when a hyperlink is chosen, it must add a hyperlink
callback to the help dialog. You must write a callback function that handles the hyperlink
appropriately.

To Provide a Hyperlink Callback
1. Add a hyperlink callback to each help dialog as shown:

XtAddCallback (helpDialog, DtNhyperlLinkCallback,
 HyperlinkCB, (XtPointer)NULL);

Where helpDialog is the widget ID of the help dialog and HyperlinkCB is the name of the
callback function for handling hyperlinks.

2. Write the HyperlinkCB function to handle the hyperlink events that can occur within the
dialog.

Within the hyperlink callback, you have access to the following callback structure (which
is declared in <Dt/Help.h>):

typedef struct
{

int reason;
XEvent *event;
char *locationId;
char *helpVolume;
char *specification;
int hyperType;
int windowHint;

} DtHelpDialogCallbackStruct;

The hyperType element indicates which type of link was executed. Its possible values are:
DtHELP_LINK_TOPIC, DtHELP_LINK_MAN_PAGE, DtHELP_LINK_APP_DEFINE, or
DtHELP_LINK_TEXT_FILE. For a description of which structure elements are valid for
different types refer to the DtHelpDialog(3) man page.

The windowHint element indicates a window type. Its possible values are:
DtHELP_CURRENT_WINDOW, DtHELP_POPUP_WINDOW, or DtHELP_NEW_WINDOW.

Example
The following function, HyperlinkCB(), illustrates the general structure needed to handle
hyperlink callbacks.

XtCallbackProc

HyperlinkCB (widget, clientData, callData)
 Widget widget;
 XtPointer clientData;
 XtPointer callData;
 {
 DtHelpDialogCallbackStruct *hyperData =
 (DtHelpDialogCallbackStruct *) callData;
 switch ((int)hyperData–> hyperType)

145CDE Help System Author’s and Programmer’s Guide

 {
 case DtHELP_LINK_TOPIC:
 /* Handles ”jump new view”hyperlinks. */
 break;
 case DtHELP_LINK_MAN_PAGE:
 /* Handles ”man page” hyperlinks. */
 break;
 case DtHELP_LINK_APP_DEFINE:
 /* Handles ‘‘application–defined” hyperlinks. */
 break;
 case DtHELP_LINK_TEXT_FILE:
 /* Handles ‘‘text file” hyperlinks. */
 break;
 default:
 break;
 }

Detecting When Help Dialogs Are Dismissed
To detect when a general help dialog is closed, add the following callback to the dialog:

XtAddCallback (helpDialog , DtNcloseCallback,
 HelpCloseCB , (XtPointer)NULL);

Where helpDialog is the widget ID for the help dialog and HelpCloseCB is the name of the
callback procedure you’ve written to handle closing dialogs.

To detect when a quick help dialog is closed, add the following callback to the dialog’s OK
button:

XtAddCallback (DtHelpQuickDialogGetChild (helpDialog ,
DtHELP_QUICK_OK_BUTTON), XmNactivateCallback, HelpCloseCB ,
(XtPointer)NULL);

Where helpDialog is the widget ID for the help dialog and HelpCloseCB is the name of the
callback procedure you’ve written to handle closing dialogs.

Using the Application–Configured Button
The quick help dialog’s application–configured button lets you add custom behavior to any
quick help dialog. This button can be used for anything you want, but its intended purpose is
to provide a path to more help in one of these two ways:

• Lets the user progressively ask for more information. This is sometimes called
progressive disclosure. In this case, the default button label (More) is appropriate.

• Lets the user open a general help dialog for general browsing of the application’s help
volume. In this case, Browse… is the most appropriate button label.

To Enable the Application–Configured Button
1. Get the button’s ID.

2. Add an activate callback to the button.

3. Manage the button.

146 CDE Help System Author’s and Programmer’s Guide

Example
The following code segment gets the button’s ID, assigns a callback, and manages the
button. It assumes that quickHelpDialog was just created.

Widget moreButton;

moreButton = DtHelpQuickDialogGetChild (quickHelpDialog,
 DtHELP_QUICK_MORE_BUTTON);
XtAddCallback (moreButton, XmNactivateCallback,
 MoreHelpCB, NULL);
XtManageChild (moreButton);

See Also
• “To Create a Quick Help Dialog”

• DtHelpDialog(3) man page

• DtHelpQuickDialog(3) man page

147CDE Help System Author’s and Programmer’s Guide

Providing Help on Help

Help on help tells users how to use the Help System. Specifically, it describes such tasks as
using hyperlinks, navigating topics, using the index, and printing help topics. Normally, help
on help is supplied as an individual help volume named Help4Help.

The Help4Help volume and its source files are included in the Developer’s Toolkit. You can
use the default volume “as is,” or modify it for your application’s design.

This section explains how to incorporate a help volume into your application that describes
the features of the Help System and how to use them. This help volume provides help on
using the Help dialog boxes.

• Accessing Help on Help in an Application

• To Set the helpOnHelpVolume Resource

• To Provide a Using Help Command

• To Display Help on Help

• Writing Your Own Help on Help Volume

• To Copy the Help4Help Source Files

For Application Help
If you are writing application–specific help, there are two ways to ensure that your
application has help on help for its own help dialogs:

• Rely on the desktop’s help on help volume. For example, on workstations running the
desktop, the standard Help4Help volume is installed.

• Supply your own help on help volume. The HelpTag source files for the Help4Help
volume are provided in the /usr/dt/dthelp/help4help/C directory. A control subdirectory
contains HelpTag processing files. You run HelpTag in this directory to create the
run–time help file. Graphics files used in the help on help volume are stored in the
control/graphics subdirectory.

 For Standalone Help
If you are writing standalone help, you are probably relying on the Helpview program already
being installed and ready to use. If this is the case, you don’t have to worry about help on
help because Helpview accesses the standard Help4Help volume by default.

How Help on Help Is Found
Each application that uses the Help System (including Helpview) has a helpOnHelpVolume
resource that identifies a help volume to be accessed for help on help topics. For Helpview,
this resource is set as follows:

DtHelpview*helpOnHelpVolume: Help4Help

If you provide your own help on help volume, be sure to give it a unique name so it doesn’t
conflict with another help on help volume that may be installed on the system.

Accessing Help on Help in an Application
Your application should do the following to support help on help:

• Set the helpOnHelpVolume resource to identify the help volume you want to access.

148 CDE Help System Author’s and Programmer’s Guide

• Add a Using Help command to the application’s Help menu.

To Set the helpOnHelpVolume Resource
• Add a line to your application’s application–defaults file like this:

 App–class *helpOnHelpVolume: volume

Where App–class is the application’s class name and volume is the name of the help on
help volume you want to access.

Or, within your application, set the helpOnHelpVolume resource for each help dialog you
create.

Examples
• This line in dthelpview’s application–defaults file (DtHelpview) specifies the help on help

volume:

DtHelpview*helpOnHelpVolume: Help4Help

• To specify the help on help volume when creating a help dialog, add it to the argument list
passed to the create function as shown here:

ac = 0;
XtSetArg (al[ac], XmNtitle, ”My Application – Help”); ac++;
XtSetArg (al[ac], DtNhelpOnHelpVolume, ”Help4Help”); ac++;
helpDialog = DtCreateHelpDialog (parent , ”helpDialog”, al, ac);

To Provide a Using Help Command
1. Add to your Help menu a button labeled Using Help. Also add the necessary activate

callback to call your HelpRequestCB() function.

2. Add support to your HelpRequestCB() function to display help on help. Specifically:

• Create a quick help dialog.

• Set the dialog’s title to Help On Help.

• Display the home topic of the help on help volume.

• Manage the quick help dialog.

Example
The following lines create a menu button labeled Using Help… that calls the
HelpRequestCB() function.

/* Create the ‘ Using Help ...’ button. */

labelStr = XmStringCreateLtoR (”Using Help ...”,
XmSTRING_DEFAULT_CHARSET);
ac = 0;
XtSetArg (al[ac], XmNlabelString, labelStr); ac++;
button = XmCreatePushButtonGadget (parent , ”usingHelpButton”, al,
ac);
 XtManageChild (button);
 XmStringFree (labelStr);
 /* Add a callback to the button. */

 XtAddCallback (button,XmNactivateCallback,HelpRequestCB,
 USING_HELP);

149CDE Help System Author’s and Programmer’s Guide

USING_HELP is the client data passed to the HelpRequestCB() function when the menu
button is chosen by the user. Presumably it has been defined somewhere in the application
(perhaps in a Help.h file) as a unique integer:

#define USING_HELP 47

To see how the HelpRequestCB() function handles the USING_HELP case, see the
example in the next section, “To Display Help on Help.”

To Display Help on Help
1. Create a quick help dialog (or retrieve one from your cache).

2. Display in the dialog the home topic of your help on help volume.

Help on help can be displayed in a general help window. However, a quick help dialog is
recommended because its user interface is simpler, which is less intimidating to new users
who commonly need help on help.

Example
The following program segment is part of a HelpRequestCB() function. Presumably, the
USING_HELP constant is passed to the function because the user chose Using Help from
the application’s Help menu or chose the Help button in a quick help dialog.

This example assumes that the application never creates more than one Help On Help
dialog and maintains its widget ID in a variable called onHelpDialog.

case USING_HELP:

 if (onHelpDialog == (Widget)NULL)
 {
 /* Get a quick help dialog for use as the ‘ help on help’
dialog. */
 onHelpDialog = FetchHelpDialog (True);

 if (onHelpDialog == (Widget)NULL)
 /* We didn’t get a dialog! Add your error handling code here.
*/
 }

 /* Set the proper volume and ID to display the home topic of
 the help on help volume. Also, set the dialog’s title. */
 ac = 0; XtSetArg (al[ac], XmNtitle, ”Help On Help”);
ac++;
 XtSetArg (al[ac], XmNhelpType, DT_HELP_TYPE_TOPIC); ac++;
 XtSetArg (al[ac], XmNhelpVolume, ”Help4Help”); ac++;
 XtSetArg (al[ac], XmNlocationId, ”_hometopic”); ac++;
 XtSetValues (onHelpDialog, al, ac);

 /* If the ‘ help on help’ dialog is already managed, it might
 be in another workspace, so unmanage it. */
 if (XtIsManaged (onHelpDialog))
 XtUnmanageChild (onHelpDialog);

 /* Manage the ‘ help on help’ dialog. */
 XtManageChild (onHelpDialog);

 break;

150 CDE Help System Author’s and Programmer’s Guide

To see how the rest of the HelpRequestCB() function might be structured, refer to the
example in “To Add a Help Callback”.

See Also
• “To Create a Quick Help Dialog”

• “To Display a Help Topic”

Writing Your Own Help on Help Volume
If you need to provide your own help on help volume, you should start with the existing
Help4Help volume and then make the necessary changes. All the source files used to write
the Help4Help volume are provided in the /usr/dt/dthelp/help4help/C directory.

To prevent installation conflicts, name your help on help volume something other than
Help4Help. Consider picking a name that is specific to your product. For example, if your
application’s help volume is Newapp, your help for help volume could be NewappH4H.

Required Entry Points
To ensure that context–sensitive help within a help dialog operates correctly, you must
provide the following entry points (IDs) within your help on help volume. (These are already
included in the Help4Help source files.)

ID Topic Description

_hometopic Displays an introduction to using the help system. This topic is displayed
when you choose Using Help from the general help dialog’s Help menu, or
when you press F1 in a quick help dialog. (The ID _hometopic is created
automatically by the <hometopic> element.)

_copyright Displays the copyright and version information for the help on help volume.
This topic is displayed when you choose Version from the general help
dialog’s Help menu. (The ID _copyright is created automatically by the
<copyright> element.)

history Displays a topic that describes how to use the History dialog. This topic is
displayed when you choose Help or press F1 within the History dialog.

printing Displays a topic describing how to use the Print dialog. This topic is
displayed when you choose Help or press F1 within the Print dialog.

index–search
Displays a topic describing how to use the Index Search dialog. This topic is
displayed when you choose Help or press F1 within the Index Search
dialog.

volume–select
Displays a topic describing how to use the Search Volume Selection Dialog.
This topic is displayed when you choose Help or press F1 within the Search
Volume Selection Dialog.

To Copy the Help4Help Source Files
1. Copy the entire /usr/dt/dthelp/help4help/C directory to a new working directory (new–dir)

using a command like this:

 cp –r /usr/dt/dthelp/help4help/C new–dir

This creates new–dir and copies all the files and directories into it.

151CDE Help System Author’s and Programmer’s Guide

2. To permit editing the files (which are copied as read only), change the permissions using
a command like this:

 chmod –R u+w new–dir

The Help4Help volume uses these HelpTag source files:

• MetaInfo

• Toc

• Tasks

• HomeTopic

• Concepts

• Reference

• Glossary

Also included is a control directory, where you run HelpTag to create the run–time help
file. Graphics are stored in the control/graphics subdirectory.

Be sure to rename the Help4Help.htg file before running HelpTag. Your help on help volume
should have a unique name to prevent conflicts with other help on help volumes.

Example
The following commands create a copy of the help on help volume and make its files
writable. (Presumably the projects subdirectory already exists.)

cp –r /usr/dt/dthelp/help4help/C /users/dex/projects/NewHelp4Help

chmod –R u+w /users/dex/projects/NewHelp4Help

To build a new version of the run–time help files, first ensure that the directory /usr/dt/bin is
in your search path. Then, change to the new directory, rename the Help4Help.htg file, and
run HelpTag:

cd /users/dex/projects/NewHelp4Help

mv Help4Help.htg NewH4H.htg
dthelptag NewH4H

When the HelpTag software is done, you can display the new help on help volume using this
command:

dthelpview –helpVolume NewH4H

152 CDE Help System Author’s and Programmer’s Guide

Preparing an Installation Package

This section identifies the help files that are included in an application installation package. It
also describes how help files are handled when your application is registered on the
desktop.

• Delivering Online Help

• Creating an Installation Package

• Registering Your Application and Its Help

• Product Preparation Checklists

Overview
When it comes time to prepare your final product, you must be sure that all your help files
are created and installed properly. Your product package includes both the run–time help file
(volume.sdl) and its graphic files. Additionally, you can provide a help family file that enables
your volume to be viewed using the Front Panel Help Viewer.

Delivering Online Help
Online help can be fully integrated into an application or provided as a standalone help
volume. Fully integrated help allows a user to directly access help information from an
application by using a Help menu or Help key. A standalone volume on the other hand, can
only be displayed using the desktop Help Viewer.

A system administrator may choose to add a standalone help volume to the desktop when
an application does not provide integrated help or a customized environment provides a
supplemental help volume. See “Standalone Help” for instructions to install a standalone
volume on the desktop.

Creating an Installation Package
Your installation package should include these help files:

• Run–time help files

• Graphics files

• Help family file (optional)

• Application defaults file (optional)

The run–time help file and any graphics used in the online help are included in your
installation package. A help family file is optional for integrated application help. However, if
you want your application help to be browsable using the desktop Help Viewer, you must
provide a family file. If you are delivering a standalone help volume, you must provide a help
family file. See “To Create a Help Family ”.

If your application’s help volume includes execution links, it is recommended that the author
define execution aliases in an application defaults file. This takes advantage of the Help
System’s default execution policy which will automatically execute links with execution
aliases. However, if the help volume is viewed as an independent volume using a separate

153CDE Help System Author’s and Programmer’s Guide

information viewer, such as the Help Viewer, the Help System will display a confirmation
dialog box when an execution link is selected.

Figure shows a typical installation package for an application and its help files. Help files are
grouped in a separate help subdirectory which contains a default language directory (C is
the default). The run–time help file, family file, and graphics files are located in this directory.

Application Installation Package

If your application provides online help in multiple languages, you should create a language
subdirectory to accommodate each language (where language matches the user’s LANG
environment variable). For example, an application that provides both an English and
German user interface stores its corresponding online help in two subdirectories: C for
English and german for German.

Run–Time Help File
HelpTag creates a single run–time help file, volume.sdl. The base name, volume , is the
same as the base name of your volume.htg file. The Help Viewer uses information stored
in this master help file and also accesses any associated graphic files.

You don’t need to ship the volume.htg or any additional files generated by the HelpTag
software.

Graphics Files
If your help volume uses graphics, the image files are typically stored in a separate directory
for convenience. However, you may choose to store them in the same location as your
volume.htg file.

A run–time help file does not include actual graphic images. Instead, it contains a
”reference” to the location of each graphic file. When you run HelpTag, the dthelptag
compiler incorporates the relative path names of the graphics files into the help volume.

When the help files are installed, the graphics files must be in the same relative position as
when the run–time file was built. Otherwise, the help volume will be unable to locate the
graphics files. For example, if your graphics files are in a subdirectory named graphics
one level below your volume.htg file, then your installation package must preserve that
relative position. The graphics files must be placed in a subdirectory named graphics one
level below the volume.sdl file.

154 CDE Help System Author’s and Programmer’s Guide

Relationship of build directories and installation
package

Help Family File
You can optionally provide a help family file (volume.hf). A family file briefly describes your
help volume and includes copyright information. It can also be used to group one or more
related volumes into a single product category.

If you want your help volume to be accessible from the desktop browser volume, then you
must provide a family file in your installation package. To create a family file, see “To Create
a Help Family ”.

Registering Your Application and Its Help
The desktop’s integration utility, dtappintegrate, registers your application and its help
files by creating symbolic links between the installed application files and specific desktop
directories. Application registration ensures that your help files are located in the directory
search paths used by the Help System.

Registration enables two important features of the Help System:

• Cross–volume hyperlinks — A hyperlink in one help volume can refer to another help
volume using just the volume name and an ID within the volume. If the destination volume
is registered, the link does not have to specify where the volume is stored on the file
system.

• Help family browsing — If you also register a ”help family”, then your help volumes will be
browsable using the Help Viewer.

Registering your online help makes it easier to access the help you provide. For authors and
programmers, it’s easier because references to your volume can use just the volume name
— without specifying the volume’s actual location.

If you register a help family with one or more help volumes, you make your help available for
general browsing from the Front Panel Help Viewer. This allows access to
application–specific help without using the application. Or, if you are writing standalone help,
this is the only way for users to get to your help.

Standalone Help
A standalone help volume for an application or a customized environment can be created
using the Help System Developer’s Kit. To make the help volume accessible from in the

155CDE Help System Author’s and Programmer’s Guide

desktop browser volume, a system administrator installs the run–time help file, associated
graphics, and family file in the /etc/dt/appconfig/help/ language directory.

Remember that the run–time help file and its graphics files must be installed in the same
relative position as when the help volume was built. See “Graphics Files” to review the
installation of graphics files.

What Happens When the Application Is Registered
Application registration creates symbolic links from the run–time help file and family located
in app_root/dt/appconfig/help/ language to the /etc/dt/appconfig/help/language directory.

Refer to the Advanced User’s and System Administrator’s Guide for detailed instructions for
application registration.

How a Help Volume Is Found
The Help System uses desktop search paths to locate help volumes. When help is
requested within an application or a help volume is specified in a command line, the help
volume is found by checking a set of search path directories. You can control the directory
search path for help volumes by modifying several environment variables. Refer to the
Advanced User’s and System Administrator’s Guide for detailed information about
specifying search paths.

Product Preparation Checklists
The following checklists should help you verify that you’ve prepared your product correctly.
Of course, there’s no substitute for testing your product by using it as a user will.

For Authors
1. A final version of the run–time help file was created.

Here are the recommended commands for creating the run–time file:

dthelptag –clean volume
dthelptag volume nomemo onerror=stop

The –clean option removes files from any previous dthelptag command, the nomemo
option ensures that writer’s memos are not displayed, and the onerror=stop option stops
processing if any parser errors occur. You should not distribute a help volume that has
any parser errors.

2. All hyperlinks have been tested.

Each hyperlink displays the proper topic or performs the correct action.

3. Execution aliases have been defined for execution links.

Execution aliases are defined as resources in the application’s application defaults file.
An execution alias associates a name with a shell command to be executed. If you have
used execution links in your help volume, coordinate with the application developer to
add these resources to the application defaults file. For more information, refer to
“Execution Aliases”.

4. All graphics are acceptable.

The graphics have been tested on various color, grayscale, and monochrome displays.

156 CDE Help System Author’s and Programmer’s Guide

For Product Integrators
1. The run–time file is installed.

2. All graphics are installed in the proper locations.

Each graphics file must be installed in the same relative position to the .sdl file that it was
in relative to the.htg file when the HelpTag software was run.

3. The help volume is registered.

The dtappintegrate script was run to create symbolic links from the installation directory
to the registration directory.

4. A product family file is installed and registered.

The family file is installed with the other help files. When dtappintegrate is run, it creates
a symbolic link for the family file. Registering a family file for your help volume is optional.
However, if you choose not to register a family file, your help volume will not be
accessible from the Front Panel Help Viewer.

For Programmers
1. The application sets the correct values for these required resources:

App–class *helpVolume: volume
App–class *helpOnHelpVolume: help–on–help–volume

The helpVolume resource identifies the help volume for your application.The
helpOnHelpVolume identifies the help volume that contains the help on using the help
system.

2. Execution aliases are included in the application defaults file.

An author defines execution aliases as application resources. An execution alias
associates a name with a shell command to be executed. If execution links have been
used in the help volume, check with the author to identify the resources that need to be
added. For more information, refer to “Execution Aliases”.

3. The application sets the desired values for the following optional resources:

App–class *DtHelpDialogWidget*onHelpDialog*rows: rows
App–class *DtHelpDialogWidget*onHelpDialog*columns: columns
App–class *DtHelpDialogWidget*definitionBox*rows: rows
App–class *DtHelpDialogWidget*definitionBox*columns: columns

The onHelpDialog resources control the size of the quick help dialogs used to display
Help on Help. The definitionBox resources control the size of the quick help dialog used
for definition links.

4. The application uses either the default font resources or defines font resources in the
application’s application–defaults file.

In most cases an application can rely on the default font resources. However, when
custom fonts are used, they must be defined in the application–defaults file. Sample font
schemes are provided in the /usr/dt/dthelp/fontschemes directory.

157CDE Help System Author’s and Programmer’s Guide

Part 4 —Internationalization

Native Language Support

This section identifies files used by the Help System that require modification when a help
volume is provided in multiple languages.

• Internationalized Online Help

• Character Sets and Multibyte Characters

• Locale and Character Set

• DtHelp Message Catalog

• LANG Environment Variable

• Understanding Font Schemes

• Creating a Formatting Table

• Displaying a Localized Help Volume

• Preparing Online Help for International Audiences

Internationalized Online Help
If your product is intended for an international audience, then providing online help in the
user’s native language is important. The Help System supports the authoring and displaying
of online help in virtually any language.

When you process a help volume to create run–time help files, the HelpTag software must
be told what language and character set you used to author your files. The language and
character set information is also used to determine the proper fonts for displaying the help
volume.

Internationalization Factors
Several factors, which are explained in the following section, contribute to providing online
help in the user’s native language.

Character Sets and Multibyte Characters
A character set determines how a computer’s internal character codes (numbers) are
mapped to recognizable characters. In most languages, single–byte characters are sufficient
for representing an entire character set. However, there are some languages that use
thousands of characters. These languages require two, three, or four bytes to represent
each character uniquely.

Character sets supported by the Help System are listed in the following table. However,
some characters sets may not exist on all platforms.

158 CDE Help System Author’s and Programmer’s Guide

Common Desktop Environment Character Sets
Language Character Set

Name
Description

Western
Europe
and Americas

ISO–8859–1
HP–ROMAN8

ISO Latin 1
HP Roman

IBM–850 PC Multi–lingual

Central Europe ISO–8859–2 ISO Latin 2

Cyrillic ISO–8859–5 ISO Latin/Cyrillic

Arabic ISO–8859–6 ISO Latin/Arabic
HP–ARABIC8 HP Arabic8
IBM–1046 PC Arabic

Hebrew ISO–8859–8 ISO Latin/Hebrew
HP–HEBREW8 HP Hebrew8
IBM–856 PC Hebrew

Greek ISO–8859–7 ISO Latin/Greek
HP GREEK8 HP Greek8

Turkish ISO–8859–9 ISO Latin 5
HP–TURKISH8 HP Turkish8

Japanese EUC–JP Japanese EUC (JISX0201, JISX0208,
JISX0212)

HP–SJIS HP Japanese Shift JIS
HP–KANA8 HP Japanese Katakana8 (JISX0201 1976)
IBM–932 PC Japanese Shift JIS

Korean EUC–KR Korean EUC

Chinese EUC–CN Simplified Chinese EUC (China) (GB2312)
Zh_CN Simplified Chinese GBK (China)
EUC–TW Traditional Chinese EUC (Taiwan) (CNS

11643.*)
HP–BIG5 HP Traditional Chinese Big5
HP–CCDC HP Traditional Chinese CCDC
HP–15CN HP Traditional Chinese EUC

Thai TIS–620 Thai

When writing HelpTag files, you may use multibyte characters for any help text. However,
the HelpTag markup itself (tag names, entity names, IDs, and so on) must be entered using
eight–bit characters

Language and Territory Names
When choosing a language, you select both a character set and a language and territory
name. The language and territory name is used to accommodate variations, such as
currency and date format, for a given country or region.

159CDE Help System Author’s and Programmer’s Guide

The language and territory names supported by the Help System are listed in the following
table. Before you choose a language, refer to your system documentation to identify the
languages and character sets supported on your platform.

Help System Language and Territory Names
Languages Language/Territory Name Language, Territory

Standards compliance
C C
POSIX C

Western Europe/Americas
da_DK Danish, Denmark
de_AT German, Austria
de_CH German, Switzerland
de_DE German, Germany
en_AU English, Australia
en_CA English, Canada
en_DK English, Denmark
en_GB English, U.K.
en_IE English, Ireland
en_MY English, Malaysia

en_NZ English, New Zealand
en_US English, USA
es_AR Spanish, Argentina
es_BO Spanish, Bolivia
es_CL Spanish, Chile
es_CO Spanish, Columbia
es_CR Spanish, Costa Rica
es_EC Spanish, Ecuador
es_ES Spanish, Spain
es_GT Spanish, Guatemala
es_MX Spanish, Mexico
es_PE Spanish, Peru
es_UR Spanish, Uruguay
es_VE Spanish, Venezuela
et_EE Estonian, Estonia
fi_FI Finnish, Finland
fo_FO Faroese, Faeroe Island
fr_BE French, Belgium
fr_CA French, Canada
fr_CH French, Switzerland
fr_FR French, France
is_IS Icelandic, Iceland
it_CH Italian, Switzerland
it_IT Italian, Italy
kl_GL Greenlandic, Greenland
lt_LT Lithuanian, Lithuania
lv_LV Latvian, Latvia
nl_BE Dutch, Belgium
nl_NL Dutch, The Netherlands
no_NO Norwegian, Norway
pt_BR Portuguese, Brazil
pt_PT Portuguese, Portugal
sv_FI Swedish, Finland
sv_SE Swedish, Sweden

160 CDE Help System Author’s and Programmer’s Guide

Help System Language and Territory Names
Languages Language, TerritoryLanguage/Territory Name
Central Europe

cs_CS Czech
hr_HR Croatian, Croatia
hu_HU Hungarian, Hungary
pl_PL Polish, Poland
ro_RO Rumanian, Romania
sh_YU Serbocroatian, Yugoslavia
si_CS Slovenian
si_SI Slovenian
sk_SK Slovak

Cyrillic
bg_BG Bulgarian, Bulgaria
mk_MK Macedonian
ru_RU Russian
ru_SU Russian
sp_YU Serbian, Yugoslavia

Arabic*
ar_SA Arabic

ar_AA Arabic
ar_DZ Arabic

Hebrew
iw_IL Hebrew, Israel

Greek
el_GR Greek, Greece

Turkish
tr_TR Turkish, Turkey

Asia
ja_JP Japanese, Japan
ko_KR Korean, Korea
zh_CN Chinese, China
zh_TW Chinese, Taiwan

Thai
th_TH Thai, Thailand

Note: No ISO territory name exists for the Arabic–speaking regions of the world. Vendors
have supplied their own, which have been adopted for use in the Common Desktop
Environment.

Locale and Character Set
A help volume’s default language and character set can be defined as an entity in the
helplang.ent file. To specify a complete locale name, combine the language and
territory name with the character set name using this syntax:

language–and–territory–name.character–set–name

For a description of the helplang.ent file, see “helplang.ent File”.

Examples
• The following entity declaration specifies a complete locale name for the C standard

language and the ISO–8859–1 character set:

<! ENTITY LanguageElementDefaultLocale SDATA “C.ISO–8859–1”>

161CDE Help System Author’s and Programmer’s Guide

• The same information could also be entered using two entity declarations as follows:

<! ENTITY LanguageElementDefaultLocale SDATA “C”>
<! ENTITY LanguageElementDefaultCharset SDATA “ISO–8859–1”>

• To specify the German language using the same character set, use this declaration:

<! ENTITY LanguageElementDefaultLocale SDATA “de_DE.ISO–8859–1”>

• Or, to specify the Japanese language using the EUC–JP character set, use this
declaration:

<! ENTITY LanguageElementDefaultLocale SDATA “ja_JP.EUC–JP”>

If the locale is not specified in the helplang.ent file, then the value is derived from the value
of the LANG environment variable.

HelpTag Software
When you process a help volume to create run–time help files, the HelpTag software must
be told what language and character set you used to author your files. The language and
character set information is used to determine the proper fonts for displaying help topics. If
you do not specify a language and character set, HelpTag assumes the default, which is
English and ISO–8859–1.

The language and character set can be defined in the helplang.ent file . Or, the
character set can be specified as an option on the command line when running dthelptag in
a terminal window.

Note: When writing HelpTag files, you may use multibyte characters for any help text.
However, the HelpTag markup itself (tag names, entity names, IDs, and so on) must
be entered using eight–bit characters.

DtHelp Message Catalog
The menus, buttons, and labels that appear in help dialogs should also be displayed in the
user’s native language. To enable this, Help dialogs read such strings from a message
catalog named DtHelp.cat.

The message catalog source file, DtHelp.msg, contains strings for menus, buttons, and
messages. If the language you need is not supplied, you must translate the sample
message catalog (/usr/dt/dthelp/nls/C/DtHelp.msg) and then use the gencat command to
create the run–time message catalog file. See “To Create a Message Catalog” for
instructions.

Refer to your system documentation to determine the correct directory where your new
message catalog should be installed.

LANG Environment Variable
The user’s LANG environment variable is important for two reasons:

• The value of LANG is used to locate the correct help volume.

• When a help topic is displayed, the correct fonts and formatting rules are chosen based
on the user’s LANG variable. This is especially important for Asian languages that have
word–wrap rules that are more sophisticated than European and American languages.

See Also
• Internationalization Programmer’s Guide

• NLS documentation for your computer’s operating system or programmer’s kit

162 CDE Help System Author’s and Programmer’s Guide

helplang.ent File
The helplang.ent file defines text entities used by the Helptag software to determine the
default locale and character set for a help volume. See “Locale and Character Set” to learn
how to specify a language and character set for your help volume.

The helplang.ent file also defines text entities for default strings such as Note, Caution, and
Warning. If you want to override the English strings built into the HelpTag software, copy the
file and localize the strings. The file is located in the directory /usr/dt/dthelp/dthelptag.

Here is an excerpt from the helplang.ent file:

<!ENTITY LanguageElementDefaultLocale SDATA
“C.ISO–8859–1”>

<!ENTITY NoteElementDefaultHeadingString SDATA “NOTE”>
<!ENTITY CautionElementDefaultHeadingString SDATA “CAUTION”>
<!ENTITY WarningElementDefaultHeadingString SDATA “WARNING”>
<!ENTITY ChapterElementDefaultHeadingString SDATA “Chapter”>
<!ENTITY FigureElementDefaultHeadingString SDATA “Figure”>
<!ENTITY GlossaryElementDefaultHeadingString SDATA “Glossary”>
.
.
.

Formatting Tables
A multibyte language, such as Japanese or Chinese, requires a formatting table. This table
specifies a list of characters that cannot start a line and those characters that cannot end a
line. When help files are processed, the formatting table ensures that lines wrap correctly.
“Creating a Formatting Table” explains how to create a new table or edit the sample table
provided in the Help Developer’s Kit.

Font Schemes
One of the primary functions of the HelpTag software is to convert your marked–up files into
a run–time format that the Help System understands. Text is formatted by specifying
particular attributes such as type family, size, slant, and weight. A font scheme is simply a
name, like an alias, that the Help System uses to assign fonts to HelpTag elements such as
heads, procedures, lists, and so forth. It provides a way to map a group of text attributes
used by the Help System with specific fonts.

Applications that use the standard Common Desktop Environment fonts do not need to
define additional font resources. If your application relies on a different set of fonts, you must
create and add a font scheme to your application.

See Also
• DtStdInterfaceFontNames (5) man page

• DtStdAppFontNames (5) man page

Understanding Font Schemes
When you write a help volume using the HelpTag markup language, you don’t specify the
fonts and sizes of the text. When you run the HelpTag software, the elements that you’ve
entered are formatted into run–time help files that include text attributes.

A font scheme maps text attributes to actual font specifications. For example, if a help topic
is formatted using a bold, sans serif typeface, the font scheme identifies which Common
Desktop Environment standard font or X font is actually used to display the text.

163CDE Help System Author’s and Programmer’s Guide

One of the primary uses of font schemes is to provide a choice of font sizes. The HelpTag
software formats the body of most topics as 10–point text. However, because the actual
display font is determined by the font scheme being used, all 10–point text could be
specified to use a 14–point font.

Font Resources
Each font scheme is actually a set of X resources. These resources are read by the
application displaying the help. If you want to change the font scheme, you can set font
resources in your application’s application defaults file.

Each resource within a font scheme has this general form:

*pitch.size.slant.weight.style.lang.char–set: font specification

Where:

pitch Specifies the horizontal spacing of characters. This field should be either p
(proportional) or m (monospace).

size Specifies the height of the desired font. For help files formatted with
HelpTag, this value should be 6, 8, 10, 12, or 14.

slant Specifies the slant of the desired font. Usually this field is either roman for
upright letters or italic for slanted letters

weight Specifies the weight of the desired font. Usually this field is either medium
or bold.

style Specifies the general style of the desired font. For help files formatted with
HelpTag, this value should be either serif or sans_serif.

lang Specifies that volumes compiled using this language should use these
fonts. Usually the entry uses an * (asterisk) so that all volumes using the
specified char_set will use these fonts.

char–set Specifies the character set used to author the help text. This value must
match the character set that was specified when HelpTag was run. The
default is ISO–8859–1. Some special characters are displayed using a
symbol character set.

An * (asterisk) can be used in a field to specify a font that has any value of that particular
attribute. For instance, the symbol set (for special characters and special symbols)
distinguishes a unique font based only on size and character set.

 Its font resources appear like this within a font scheme:

.6..*.*.*.DT–SYMBOL–1:
–adobe–symbol–medium–r–normal–*–*–60–*–*–p–*–adobe–fontspecific

.8..*.*.*.DT–SYMBOL–1:
–adobe–symbol–medium–r–normal–*–*–80–*–*–p–*–adobe–fontspecific
.10..*.*.*.DT–SYMBOL–1:
–adobe–symbol–medium–r–normal–*–*–100–*–*–p–*–adobe–fontspecific
.12..*.*.*.DT–SYMBOL–1:
–adobe–symbol–medium–r–normal–*–*–120–*–*–p–*–adobe–fontspecific
.14..*.*.*.DT–SYMBOL–1:
–adobe–symbol–medium–r–normal–*–*–140–*–*–p–*–adobe–fontspecific

The char–set field is the only field that cannot use the * (asterisk).

To display multibyte languages, such as Japanese or Korean, font resources must be
specified using a font set. A font set is actually a group of fonts. A resource entry for a font
set is similar to a single font, except a , (comma) separates multiple font names and the

164 CDE Help System Author’s and Programmer’s Guide

specification ends with a : (colon). Here is an example of a fully specified font resource for a
Japanese font set.

bridge–gothic–medium–r–normal––18–180–75–75–c–80–jisx0201.1976–0,

bridge–gothic–medium–r–normal––18–180–75–75–c–160–jisx0208.1983–0
,

bridge–gothic–medium–r–normal––18–180–75–75–c–160–jisx0212.1990–0
:

You can also specify fonts for a multibyte language by providing a minimal XLFD font
specification and allowing the system to supply the character set value to produce a font set.

.12.roman.medium..ja_JP.EUC–JP: –*–*–*–*–*–*–*–120–*–*–*–*–*–*:

When specifying a font set, remember to end the specification with a : (colon). This instructs
the Help System to load a set of fonts to display the information. Font sets are used to
display multibyte languages. For volumes containing single–byte information, use the
standard font specification.

Sample Font Schemes
The /usr/dt/dthelp/fontschemes directory contains four font schemes:

fontDef.fns Default fonts used by the Help System

fontLarge.fns Example of a larger font

fontMulti.fns Example of a multi–byte font

fontX11.fns Example of standard X11 fonts

To Choose a Font Scheme
• Edit the application–defaults file for the application that displays the online help. Replace

the current font resources (if any) with the new scheme.

If you are making this change just for yourself, copy the application–defaults file into your
home directory before editing it.

Example
To use a larger size font (in the help dialogs) of a personal application named
DtStopWatch, perform these steps:

Change to your home directory:

cd

Then copy the DtStopWatch application–defaults file and make it writable:

cp /usr/dt/app–defaults/C/DtStopWatch .

chmod u+w DtStopWatch

Edit the DtStopWatch file to add the largest scheme (fontLarge.fns) . Go to the end of
the file, and insert the contents of this file:

/usr/dt/dthelp/fontschemes/fontLarge.fns

Save your new DtStopWatch file.

Start the DtStopWatch application, select Help, and verify that help topics are displayed
using the new font scheme.

165CDE Help System Author’s and Programmer’s Guide

Creating a Formatting Table
A multibyte language, such as Japanese or Chinese, requires a formatting table. This table
contains three message sets. The first set consists of characters that cannot start a line; the
second set lists any characters that cannot end a line; and the third set indicates how to
handle newline characters that occur between a single–byte and a multibyte character.

A formatting table is an ASCII file whose file name must end with a.msg extension.

Sample formatting table

Any line that begins with a $ (dollar sign) followed by a space is a comment.

Sample Formatting Table
A sample formatting table for a multibyte character set is located in the
/usr/dt/dthelp/nls/zh_CN.dt–eucCN directory and is named fmt_tbl.msg.

The sample table can be modified by adding or removing characters. To edit the formatting
table, use an editor capable of composing characters in the language you have chosen for
the help information. If you intend to create help information using a multibyte language, you
need to create a formatting table.

To Create a Message Catalog
If you translate the DtHelp.msg file, create a new formatting table, or modify the sample
table (fmt_tbl.msg), you must update the message catalog used by the Help System.

• Use this command syntax to generate the catalog file:

gencat file.cat file.msg

166 CDE Help System Author’s and Programmer’s Guide

Message catalogs for the standard desktop applications are located in the
/usr/dt/lib/nls/msg/ lang directory. To install a message catalog, refer to your
operating system documentation for guidelines.

See Also
• gencat (1) man page

Displaying a Localized Help Volume
To view a help volume created for a locale different from your current system, you must set
your LANG environment variable to match the help volume. The value of the LANG
environment variable is platform–specific. If you are not familiar with this variable, check with
your system administrator for the correct value and procedure to set your environment.

Preparing Online Help for International Audiences
The following checklist summarizes the questions you should answer when providing online
help for international audiences.

• Are help topics written with an international audience in mind?

• Did you copy the /usr/dt/dthelp/dthelptag/helplang.ent file and localize the string entities
it contains? Using the entities in this file, you can override the English strings built into the
HelpTag software.

• Was the HelpTag software run using the correct character set and language option? If you
author in another character set, you may have to translate the DtHelp.msg message
catalog file and provide a font scheme that supports the new character set.

• Within your HelpTag markup, are all tag names, entity names, and IDs entered using an
eight–bit character set, even if the help text uses multibyte characters?

• When the user’s LANG environment variable is set to the correct language, are the help
files installed so they are found and displayed appropriately?

• If you have integrated the Help System into an application, have you properly set the
locale using the XtSetLanguageProc() function?

See Also
• “How a Help Volume Is Found”

• XtSetLanguageProc(3)man page

• gencat (1)man page

• NLS documentation for your computer’s operating system or programmer’s kit

167CDE Help System Author’s and Programmer’s Guide

HelpTag 1.3 DTD

The HelpTag Document Type Definition (DTD) defines each HelpTag element and the syntax
for its use. If you are not familiar with DTDs, refer to “Reading the HelpTag Document Type
Definition” for a description of the specification.

The HelpTag 1.3 DTD is also available in the Developer’s Toolkit. It is located in the
/usr/dt/dthelp/dthelptag/dtd directory and named helptag.dtd.

HelpTag 1.3 DTD

<!SGML “ISO 8879:1986”

–– SGML Declaration––

CHARSET

BASESET “ISO 646–1983//CHARSET International Reference Version
 (IRV)//ESC 2/5 4/0”
DESCSET 0 9 UNUSED
 9 2 9
 11 2 UNUSED
 13 1 13
 14 18 UNUSED
 32 95 32
 127 1 UNUSED

BASESET “ISO Registration Number 100//CHARSET ECMA–94
 Right Part of Latin Alphabet Nr. 1//ESC 2/13 4/1”

DESCSET 128 32 UNUSED
 160 5 32
 165 1 UNUSED
 166 88 38
 254 1 127
 255 1 UNUSED
CAPACITY SGMLREF

 TOTALCAP 350000
 ENTCAP 100000
 ENTCHCAP 50000
 ELEMCAP 50000
 GRPCAP 210000
 EXGRPCAP 50000
 EXNMCAP 50000
 ATTCAP 50000
 ATTCHCAP 50000
 AVGRPCAP 50000
 NOTCAP 50000
 NOTCHCAP 50000
 IDCAP 50000
 IDREFCAP 50000
 MAPCAP 210000
 LKSETCAP 50000
 LKNMCAP 50000

SCOPE DOCUMENT

SYNTAX –– The Core Reference Syntax except with ATTCNT,LITLEN,
 NAMELEN,GRPCNT, and GRPGTCNT changed ––

SHUNCHAR CONTROLS 0 1 2 3 4 5 6 7 8 9
 10 11 12 13 14 15 16 17 18 19

168 CDE Help System Author’s and Programmer’s Guide

 20 21 22 23 24 25 26 27 28 29
 30 31 127 255

BASESET “ISO 646–1983//CHARSET International Reference Version
 (IRV)//ESC 2/5 4/0”

DESCSET 0 128 0

FUNCTION RE 13
 RS 10
 SPACE 32
 TAB SEPCHAR 9

NAMING

 LCNMSTRT ““
 UCNMSTRT ““
 LCNMCHAR “–.”
 UCNMCHAR “–.”
 NAMECASE
 GENERAL YES
 ENTITY YES

DELIM

 GENERAL SGMLREF

 SHORTREF SGMLREF –– Removed short references ––

 NAMES SGMLREF

 QUANTITY SGMLREF

 ATTCNT 140
 LITLEN 4096
 NAMELEN 64
 GRPCNT 100
 GRPGTCNT 253
 TAGLVL 48

FEATURES

 MINIMIZE

 DATATAG NO
 OMITTAG NO
 RANK NO
 SHORTTAG YES

 LINK

 SIMPLE NO
 IMPLICIT NO
 EXPLICIT NO
 OTHER

 CONCUR NO
 SUBDOC NO
 FORMAL NO
 APPINFO NONE
>

<!DOCTYPE helpvolume [

<!ELEMENT helpvolume – – (metainfo?,
 hometopic?,
 (chapter* | (s1*, rsect*)),

169CDE Help System Author’s and Programmer’s Guide

 message?,
 glossary?)
 +(memo | idx) >

<!ELEMENT metainfo – – (idsection, abstract?, otherfront*)

–(footnote) >

<!ELEMENT idsection – – (title, copyright?) >

<!ELEMENT title – – (partext)
 –(memo | location | idx) >

<!ELEMENT partext – – ((#PCDATA | acro | emph |
computer |
 user | term | var | circle
 |

 quote | keycap | graphic | super
 |

 sub | book | xref |
footnote |

 esc | link | location |
newline)*) >

<!ELEMENT acro – – ((#PCDATA | esc | super | sub)*) >

<!ELEMENT emph – – (partext) –(emph) >

<!ELEMENT computer – – ((#PCDATA | quote | var | user |
esc)*) >

<!ELEMENT user – – ((#PCDATA | var | esc)*) >

<!ELEMENT term – – (partext)
 –(emph | computer | term | var |
 quote | user | book | footnote)
>

<!ATTLIST term base CDATA
#IMPLIED
 gloss (gloss | nogloss) gloss >

<!ELEMENT var – – ((#PCDATA | esc)*) >

<!ELEMENT circle – – CDATA >

<!ELEMENT quote – – (partext) –(quote) >

<!ELEMENT keycap – – ((#PCDATA | super | sub | esc)+) >

<!ELEMENT graphic – O EMPTY >

<!ATTLIST graphic id ID
#IMPLIED
 entity ENTITY
#REQUIRED >

<!ELEMENT super – – (#PCDATA) >

<!ELEMENT sub – – (#PCDATA) >

<!ELEMENT book – – (partext) –(book) >

<!ELEMENT xref – O EMPTY >

<!ATTLIST xref id IDREF
#REQUIRED >

170 CDE Help System Author’s and Programmer’s Guide

<!ELEMENT footnote – – (p+) –(footnote) >

<!ELEMENT esc – – CDATA >

<!ELEMENT link – – (partext) –(link | xref) >

<!ATTLIST link hyperlink CDATA
#REQUIRED
 type (jump |
 jumpnewview |
 definition |
 execute |
 appdefined |
 man) jump
 description CDATA
#IMPLIED >

<!ELEMENT location – – (partext) –(location) >

<!ATTLIST location id ID
#REQUIRED >

<!ELEMENT copyright – – (text)
 –(memo | location | idx) >

<!ELEMENT text – – ((p | note | caution |
warning |
 lablist | list | ex |
vex |
 esc | otherhead | procedure |
syntax |
 figure | image)*) >

<!ELEMENT p – – (head?, partext)
 +(newline) >

<!ATTLIST (p | image) indent (indent)
#IMPLIED
 id ID
#IMPLIED
 gentity ENTITY
#IMPLIED
 gposition (left | right) left
 ghyperlink CDATA
#IMPLIED
 glinktype (jump |
 jumpnewview |
 definition |
 execute |
 appdefined |
 man) jump
 gdescription CDATA
#IMPLIED >

<!ELEMENT head – – (partext)
 –(memo | location | idx) >

<!ELEMENT newline – O EMPTY >

<!ELEMENT (note |
 caution |
 warning) – – (head?, text)

 –(note | caution | warning |
footnote) >

171CDE Help System Author’s and Programmer’s Guide

<!ELEMENT lablist – – (head?, labheads?, lablistitem+) >

<!ATTLIST lablist spacing (loose | tight) loose
 longlabel (wrap | nowrap) wrap >

<!ELEMENT labheads – – (labh, labhtext)
 –(memo | location | idx) >

<!ELEMENT labh – – (partext) >

<!ELEMENT labhtext – – (partext) >

<!ELEMENT lablistitem – – (label, text) >

<!ELEMENT label – – (partext) >

<!ELEMENT list – – (head?, item+) >

<!ATTLIST list type (order |
 bullet |
 plain |
 check) bullet
 ordertype (ualpha |
 lalpha |
 arabic |
 uroman |
 lroman) arabic
 spacing (tight |
 loose) tight
 continue (continue)
#IMPLIED >

<!ELEMENT item – – (text) >

<!ATTLIST item id ID
#IMPLIED >

<!ELEMENT ex – – (head?, (exampleseg, annotation?)+)
 –(ex |

 vex |
 note |
 caution |
 warning |
 syntax |
 footnote) >

<!ATTLIST ex notes (side | stack) side
 lines (number |
 nonumber)
nonumber
 textsize (normal |
 smaller |
 smallest) normal
>

<!ELEMENT exampleseg – – (partext) +(lineno) >

<!ELEMENT annotation – – (partext) +(newline) >

<!ELEMENT lineno – O EMPTY >
<!ATTLIST lineno id ID
#IMPLIED >

<!ELEMENT vex – – CDATA >

172 CDE Help System Author’s and Programmer’s Guide

<!ATTLIST vex lines (number |
 nonumber)
nonumber
 textsize (normal |
 smaller |
 smallest) normal
>

<!ELEMENT otherhead – – (head, text?) >

<!ELEMENT procedure – – (chaphead, text?)
 –(procedure) >

<!ELEMENT chaphead – – (head, abbrev?)
 –(memo | location | idx | footnote) >

<!ELEMENT abbrev – – (partext) –(footnote) >

<!ELEMENT syntax – – (head?, synel) >

<!ELEMENT synel – – ((#PCDATA | esc | var |
 optblock | reqblock)+) >

<!ELEMENT (optblock |
 reqblock) – – (synel+) >

<!ELEMENT figure – – (caption?)
 –(figure | graphic) >

<!ATTLIST figure number NUMBER
#IMPLIED
 tonumber (number |
 nonumber) number
 id ID #IMPLIED
 entity ENTITY #REQUIRED
 figpos (left |
 center |
 right) #IMPLIED
 cappos (capleft |
 capcenter |
 capright) #IMPLIED
 ghyperlink CDATA #IMPLIED
 glinktype (jump |
 jumpnewview |
 definition |
 execute |
 appdefined |
 man) jump
 gdescription CDATA #IMPLIED >

<!ELEMENT caption – – (partext, abbrev?)
 –(memo | location | idx) >

<!ELEMENT image – – (head?, partext) –(footnote) >

<!ELEMENT abstract – – (head?, text?, frontsub*) >

<!ELEMENT frontsub – – (head?, text) >

<!ELEMENT otherfront – – (head?, text?, frontsub*) >

<!ATTLIST otherfront id ID
#IMPLIED >

<!ELEMENT hometopic – – (chaphead, text?) >

<!ELEMENT chapter – – (chaphead, text?, (s1*, rsect*)) >

173CDE Help System Author’s and Programmer’s Guide

<!ATTLIST (chapter |
 s1 |
 s2 |
 s3 |
 s4 |
 s5 |
 s6 |
 s7 |
 s8 |
 s9) id ID
#IMPLIED >

<!ELEMENT s1 – – (chaphead, text?, s2*, rsect*) >

<!ELEMENT s2 – – (chaphead, text?, s3*, rsect*) >

<!ELEMENT s3 – – (chaphead, text?, s4*, rsect*) >

<!ELEMENT s4 – – (chaphead, text?, s5*, rsect*) >

<!ELEMENT s5 – – (chaphead, text?, s6*, rsect*) >

<!ELEMENT s6 – – (chaphead, text?, s7*, rsect*) >

<!ELEMENT s7 – – (chaphead, text?, s8*, rsect*) >

<!ELEMENT s8 – – (chaphead, text?, s9*, rsect*) >

<!ELEMENT s9 – – (chaphead, text?) >

<!ELEMENT rsect – – (chaphead, text?, rsub*) >
<!ATTLIST rsect id ID
#IMPLIED >

<!ELEMENT rsub – – (chaphead, text?) >

<!ELEMENT message – – (chaphead?, text?, (msg+ | msgsub+)) >

<!ELEMENT msg – – (msgnum?, msgtext, explain?)
+(newline) >

<!ELEMENT msgnum – – ((#PCDATA | esc)+) >

<!ELEMENT msgtext – – (partext) >

<!ELEMENT explain – – (text) >

<!ELEMENT msgsub – – (chaphead, text?, msg+) >

<!ELEMENT glossary – – (text?, glossent+) >

<!ELEMENT glossent – – (dterm, definition) >

<!ELEMENT dterm – – (partext) –(term) >

<!ELEMENT definition – – (text) >

<!ELEMENT idx – – (indexprimary, indexsub?)
 –(term | footnote | location | idx) >

<!ELEMENT indexprimary – – (partext, sort?) >

<!ELEMENT indexsub – – (partext, sort?) >

<!ELEMENT sort – – ((#PCDATA | esc)+) >

<!ELEMENT memo – – CDATA >

<!ENTITY MINUS SDATA “–”>
<!ENTITY PM SDATA ‘[plusmn]’> <!–– ISOnum ––>
<!ENTITY DIV SDATA ‘[divide]’> <!–– ISOnum ––>
<!ENTITY TIMES SDATA ‘[times]’> <!–– ISOnum ––>

174 CDE Help System Author’s and Programmer’s Guide

<!ENTITY LEQ SDATA ‘[le]’> <!–– ISOtech ––>
<!ENTITY GEQ SDATA ‘[ge]’> <!–– ISOtech ––>
<!ENTITY NEQ SDATA ‘[ne]’> <!–– ISOtech ––>
<!ENTITY COPY SDATA ‘[copy]’> <!–– ISOnum ––>
<!ENTITY REG SDATA ‘[reg]’> <!–– ISOnum ––>
<!ENTITY TM SDATA ‘[trade]’> <!–– ISOnum ––>
<!ENTITY ELLIPSIS SDATA ‘[hellip]’> <!–– ISOpub ––>
<!ENTITY VELLIPSIS SDATA ‘[vellip]’> <!–– ISOpub ––>
<!ENTITY PELLIPSIS SDATA “....”>
<!–– ellipsis followed by a period ––>
<!ENTITY A.M. SDATA “a.m.”>
<!ENTITY P.M. SDATA “p.m.”>
<!ENTITY MINUTES SDATA ‘[prime]’> <!–– ISOtech ––>
<!ENTITY SECONDS SDATA ‘[Prime]’> <!–– ISOtech ––>
<!ENTITY DEG SDATA ‘[deg]’> <!–– ISOnum ––>
<!ENTITY SQUOTE SDATA “‘”>
<!ENTITY DQUOTE SDATA ‘”’>
<!ENTITY ENDASH SDATA “–”>
<!ENTITY EMDASH SDATA ‘[mdash]’> <!–– ISOpub ––>
<!ENTITY VBLANK SDATA “_”>
<!ENTITY CENTS SDATA ‘[cent]’> <!–– ISOnum ––>
<!ENTITY STERLING SDATA ‘[pound]’> <!–– ISOnum ––>
<!ENTITY SPACE SDATA “ “>
<!ENTITY SIGSPACE SDATA “& “>
<!ENTITY SIGDASH SDATA “&–”>
<!ENTITY MICRO SDATA ‘[micro]’> <!–– ISOnum ––>
<!ENTITY OHM SDATA ‘[ohm]’> <!–– ISOnum ––>
<!ENTITY UP SDATA ‘[uarr]’> <!–– ISOnum ––>
<!ENTITY DOWN SDATA ‘[darr]’> <!–– ISOnum ––>
<!ENTITY LEFT SDATA ‘[larr]’> <!–– ISOnum ––>
<!ENTITY RIGHT SDATA ‘[rarr]’> <!–– ISOnum ––>
<!ENTITY HOME SDATA “home key”>
<!ENTITY BACK SDATA “<––”>
<!ENTITY HALFSPACE SDATA “ “>

<!ENTITY % user–defined–entities SYSTEM “helptag.ent”>

%user–defined–entities;

] >

175CDE Help System Author’s and Programmer’s Guide

Glossary

application help
Online help for a particular application (software).

application–defined link
A hyperlink designed especially for invoking some application behavior. To
invoke the behavior, the help must be displayed in dialogs created by the
application. (Application–defined hyperlinks are ignored by Helpview.)

automatic help
Help presented by the system as the result of a particular condition or error.
Sometimes called ”system initiated” help. For example, error dialogs are a
form of ”automatic help.” See also semi–automatic help and manual help.

browser volume
The desktop uses the Helpview program as a ”help browser” by displaying a
special browser volume that lists the help installed on the system. A utility
called dthelpgen creates this volume in the user’s home directory.

caution A warning to the user about possible loss of data. See also note and
warning.

close callback An application function called when a help dialog box is closed.

context–sensitive help
Online information that is relevant to what the user is doing within an
application. Sometimes, pressing the F1 key is referred to as
”context–sensitive help” because the choice of help topic is based on the
user’s context.

cross–volume hyperlink
A hyperlink that jumps to a topic in a different help volume. Cross–volume
hyperlinks are entered using the <link> element, where the hyperlink
parameter specifies the volume name and an ID (separated by a space):

<link hyperlink=” volume ”> text <\link>

dialog cache A list of help dialogs that has been created but may not be in use. When the
application needs a new help dialog, it first searches its dialog cache for an
unused dialog. If one is found, it is used. Otherwise, all dialogs are in use,
so a new one is created.

Document Type Definition
A description of a set of elements used to create a structured (or
hierarchical) information. The Document Type Definition (DTD) specifies the
syntax for each element and governs how and where elements can be used
in a document.

element A logical portion of information, such as a book title, a paragraph, a list, or a
topic. Normally, the extent of an element is marked by tags, although the
tags for some elements are assumed by context.

emphasis An element of text that calls attention to the text (usually by being formatted
as italic).

entity A text string or file with a name. Most entities are named by the author
(using the <!entity> element), but some entities are predefined. See also
entity declaration and entity reference.

176 CDE Help System Author’s and Programmer’s Guide

entity declaration
Markup that establishes an entity name and its value. See also entity and
entity reference.

entity reference
Use of an entity name preceded by an & (ampersand) and followed by a ;
(semicolon) that indicates to HelpTag that the entity is to be inserted where
the entity name appears. See also entity and entity declaration.

entry point A point within a help volume that may be displayed directly as the result of a
request for help. That is, a topic where the user may ” ”enter” or begin
reading online help. Any topic, or location within a topic, that has an ID can
become an entry point.

example listing
A body of text in which line breaks are left as they are and which is
displayed in a computer font. The text is typically an example of a portion of
a computer file. Example listings are entered using the <ex> or <vex>
elements.

execution alias A resource that assigns a name to a command string or script that an
execution link executes.

execution link A hyperlink that executes a shell command or script.

execution policy
The Help System provides a resource that can be set to control the
behavior of execution links. This enables a system administrator or user to
establish an appropriate level of security for any given application.

figure A graphic or illustration that appears in the help information.

formal markup
A tag set and accompanying usage rules that are specified in the Helptag
1.3 Document Type Defnition (DTD). By following the rules set forth in the
DTD, an author can produce Standard Generalized Markup Language
(SGML) compliant help source files.

general help dialog box
A window in which help information is displayed. General help dialog boxes
have a menu bar, a topic tree (which provides a list of topics), and a help
topic display area. See also quick help dialogbox.

help callback An application function called when the user presses the F1 key.

help family A set of help volumes that are related to one another because the
applications they refer to are related.

help key A designated key, usually the F1 function key, used to request help on the
current context. Some keyboards have a dedicated Help key that may take
the place of F1. In OSF/Motif applications, the help key is enabled by
adding a help callback to a widget.

help on help Help information about how to use the help dialog boxes. The user gets this
information by pressing F1 while using a help window, or by choosing Using
Help from the Help menu in a general help dialog box.

help volume A complete body of information about a subject. Also, this term can refer to
either the set of source files that contain the marked–up text or the run–time
files generated by running HelpTag.

177CDE Help System Author’s and Programmer’s Guide

History dialog box
A dialog box that shows a list of the sequence of topics the user has visited.
The history sequence can be traversed in reverse order to make it easy for
the user to return to earlier topics.

home topic The topic at the top of the hierarchy in a help volume. This is the topic that
is displayed when the user indicates a desire to browse a help volume.
HelpTag provides a built–in ID for the home topic: _hometopic.

hyperlink A segment of text (word or phrase) or graphic image that has some
behavior associated with it. The most common type of hyperlink is a ”jump”
link, which connects to a related topic. When the user chooses a jump link,
the related topic is displayed. Hyperlinks can also be used to invoke other
kinds of behavior, such as executing a system command or invoking
specific application behavior.

hyperlink callback
An application function that is invoked when a user chooses a hyperlink.
This function is responsible for handling the types of hyperlinks not handled
automatically within the help dialog.

index A list of important words and phrases that appear throughout a help volume.
The index is an alphabetical list of the words or phrases that can be
searched to find help on a subject. The Help System displays the index
when the user chooses the Index button (in a general help dialog box). See
also Index Search dialog box.

Index Search dialog box
A dialog box that shows a list of index entries for a help volume. An index
can be displayed for the current volume, selected volumes, or all help
volumes. A user can search the index for a word or phrase and any
corresponding topics that contain the search string will be listed.

inline graphic A small graphic (illustration) that appears within a line of text.

jump–new–view hyperlink
A hyperlink that, when chosen, displays its information in a new dialog box.
Jump–new–view links are intended for cross–volume links. The user senses
a ”new context” by a new window being displayed.

man page link A hyperlink that, if activated, displays a ”man page,” which is a brief online
explanation of a system command. The information in man pages are not
supplied through the HelpTag system.

manual help A style of online help that requires the user to know what help is needed
and how to get it. For example, most commands in a Help menu are
considered ”manual” help because the user chooses when and what to
view. See also automatic help and semi–automatic help.

note A message to the user that draws attention to important information. If the
information is critically important, a caution or warning is used instead. See
also caution and warning.

parser The portion of the HelpTag software that reads the source files (which are
created by the author) and converts them into run–time help files that the
Help System dialogs can read. If the author uses markup incorrectly (or
incompletely), the parser detects the problems and indicates that ”parser
errors” have occurred.

178 CDE Help System Author’s and Programmer’s Guide

quick help dialog box
A streamlined help dialog box that has a help topic display area and one or
more push buttons. See also general help dialog box, which offers
additional capabilities.

registration The process of declaring a help volume to be accessible for browsing or
cross–volume linking.

run–time help files
The files generated by the dthelptag command. These are the files
distributed to users who will use the Help System.

Search Volume Selection dialog box
A dialog box that lists the help volumes available on a user’s system. When
a user chooses Selected from the Index Search dialog box, this dialog box
lists help volumes that the user can select. One or more volume names can
be selected and the corresponding index information is reported in the
Index Search dialog box.

semi–automatic help
A style of online help in which the user requests help and the system
decides, based on the current circumstances, which help information to
display. ”Context–sensitive” help (pressing the F1 key) is an example of
semi–automatic help. See also automatic help and manual help.

short form markup
An abbreviated way of marking an element where the end tag is marked
with a single vertical bar and the last character of the begin tag is also a
vertical bar. For example, the short form of the <book> element is:

<book| text |

shorthand markup
An abbreviated way of marking an element where the start and end tags are
replaced with a special two–character sequence. For example, the
shorthand form of the <computer> element is two opening single quotation
marks followed by two closing single quotation marks like this:

‘‘text’’

standalone help
Help information intended to be used independently of application software.
For example, online help that explains the basics of computer programming
may not be associated with a particular application. A standalone help
volume can be displayed using the dthelpview command.

Standard Generalized Markup Language (SGML)
An international standard [ISO 8879: 1986] that establishes a method for
information interchange. SGML prescribes constructs for marking the
structure of information separate from its intended presentation or format.
The HelpTag markup language conforms to this SGML standard.

tag A text string that marks the beginning or end of an element. A start tag
consists of a < (left angle bracket) followed by a special character string
(consisting of only letters), optional parameters and values, and terminated
by a > (right angle bracket). An end tag consists of a < (left angle bracket),
a \ (backslash), the same special character string, and a > (right angle
bracket). Formal markup uses a / (forward slash) in the end tag syntax.

179CDE Help System Author’s and Programmer’s Guide

Tagged Image File Format (TIFF)
A standard graphics file format. The Help System dialog boxes support
TIFF 5.0 images. TIFF images are identified by the .tif file–name extension.

topic Information about a specific subject. Usually, this is approximately one
screenful of information. Online help topics are linked to one another
through hyperlinks.

topic hierarchy A help volume’s branching structure in which the home topic branches out
(through hyperlinks) to progressively more detailed topics. See also home
topic.

topic tree In a general help dialog box, a list of topics that can be selected to display
help information.

warning Information that warns the user about possible injury or unrecoverable loss
of data. See also caution and note.

widget The fundamental building block of graphical user interfaces. The OSF/Motif
widget set provides widgets of all sorts, suitable for constructing an
application user interface.

X bitmap A two–tone image that has one foreground color and one background color.
Bitmap image files are identified by the.bm file–name extension.

X pixmap A multicolor image. Pixmap image files are identified by the.pm file–name
extension.

X window dump
An image captured from an X Window System display. The xwd utility is
used to capture a window image. X window dump image files are identified
by the .xwd file–name extension.

180 CDE Help System Author’s and Programmer’s Guide

X-181Index

Symbols
.htg file , 17
! (exclamation mark), used in shorthand markup,

74
, used as comment, 53
; (semicolon), 75
; (semicolon) , 29
& (ampersand)

 entity reference, 29, 75
 used as text character, 17

© , 95
∅, 68
% (percent symbol), used in shorthand markup,

106
+ (plus), used in shorthand markup, 45, 55, 104
* (asterisk), used in list, 35
\ (backslash)

 end tag syntax, 16
used in multiline head, 81

\ (backslash) , used as text character, 17

A
abbreviating long titles , 67
_abstract ID , 27
alias, used in execution links, 48
ampersand (&)

 entity reference, 75
 used as text character, 17

angle bracket (
apostrophe , 72
AppDefined parameter , 46
appearance, determining font scheme , 162
application entry points, verifying , 65
application help , 9
application package, 152
application program interface, list of functions, 133
application programmer, collaborating with , 10
application registration, 152
application–configured, button enabling , 145
application–defaults file, for dthelpview, 148
application–defined

 hyperlink , 42
link, creating , 46

asterisk (*) , used in list, 35
audience

knowing , 9
writing for international , 166

author
 collaboration with application programmer , 10
 responsibilities , 9
 workflow, 10

B
backslash (\)

 to create a multiline head, 81
 used in end tag, 16

backslash (\) , used as text character, 17
bitmap , 50

blank leader , 91
book title, creating, 41, 70
break, forcing line , 96
browser help volume

 adding your help to, 61
 creating, 62
 displaying, 64

bullet
 entity name for, 111
 used in list , 91
parameter in list, 91

bulleted list , 91
button, application–configured, 145
buttons, navigation, 5

C
callback

 adding close callback, 132
 close callback example, 145
adding help callback, 138
hyperlink, providing , 144

caption, figure , 50
card suit symbols , 116
caution statement, adding, 39
CDE Help System, introduction to , 1
CDE HelpTag markup reference , 66
chapter

 creating, 71
 in topic hierarchy, 14

character set, defined, 157
character, inserting special , 52, 111
checklist

application programmerÕs , 156
authorÕs , 155
internationalized help, 166
product integratorÕs , 156
product preparation , 155

clean parameter , 117
CloseHelpCB() , 132
column heading in labeled list , 87
command

 dthelpgen, 119
 summary of help commands, 117
dthelpview , 119
gencat , 161

command variable, marking , 106
command, Using Help menu, 148
comment, inserting , 53

computer, displaying input/output, 77
computer, displaying input/output, 41
continue parameter , 91
copying Help4Help source files , 150
copyright

 predefined help ID, 150
entity name of, 111
notice , 24, 73
used in meta information, 95

_copyright ID , 27, 150

X-182CDE Help System Author’s and Programmer’s Guide

correcting errors , 59
creating

 index , 54
application–defined link , 46
definition link , 45
figure , 50
file entity , 29
general help dialog box, 130
glossary , 55
help dialog boxes, 129, 131
help family , 62
home topic , 23
hyperlink , 42
language formatting table, 165
man page link , 46
message catalog, 165
meta information topic , 24
quick help dialog box, 131
run–time help files , 12, 58
structure within topic , 34
text entity , 29
topic hierarchy , 22

cross–reference
 using link element , 90
 using xref element , 109
ID value , 109
to list items , 86
using location ID, 93

D
danger, warning of , 108
definition

entering in glossary , 56
of term , 79

definition hyperlink , 42
definition link

creating , 45
for term , 15

delivery, preparing for product , 155
destination

cross–reference , 93
hyperlink , 93

dialog
detecting when dismissed , 145
handling event in , 143

dialog box, creating quick help , 131
dialog boxes

creating and managing , 129
creating general help , 130
general help , 129, 130
quick help , 129

display, font scheme for , 164
displaying

computer input/output examples , 77
computer literal , 41
graphics , 50
help on help , 149
help topic , 135
help volume , 57

inline graphic , 51
man page , 137
text file , 136
text string , 136
variable , 42

displays, testing graphics on various , 65
document title , 105
Document Type Definition (DTD) , 121
dotted leader , 91
draft comment or question , 94
DtCreateHelpQuickDialog() , 131
DtHelp_TYPE_DYNAMIC_STRING, 136
DtHELP_TYPE_FILE , 136
DtHELP_TYPE_MAN_PAGE , 137
DtHELP_TYPE_STRING, 136
DtHelpDialogCallbackStruct , 144
DtHelpExecAlias, keyword in execution link, 48
DtHelpReturnSelectedWidgetId() , 141
dthelptag command

 command line options , 117
 run from command line, 59

dthelpview command
 command line options , 119
 run from the command line, 60

DtNhelpType , 135
DtNhelpVolume , 135
DtNlocationId , 135
DTTAGOPT environment variable, 118
dump, X Window , 50

E
element

entering inline , 40
parameters , 16
start and end tags, 16
within topic, adding ID to , 28

element tag
definition link , 45
man page , 46
application–defined, 46
examples, 90
meta information, 47
adding topics, 24, 33
examples, 102
topic hierarchy, 14
topic hierarchy , 22

emphasis
 using a note, 96

exclamation mark (!), used in shorthand markup,
41, 74

execution alias
 creating, 48
 used in hyperlinks, 48

execution hyperlink , 42
execution link, control policy, 47
external file, referencing , 28

X-183Index

F
F1 (help key) , 137
family

definition of , 7
finding , 155

family file, creating , 62
figure

caption , 50
creating , 50
entity , 75
ID , 50
including , 78
number , 50

file entity, creating , 29
FILE parameter , 29, 75
file

.htg , 17
displaying text , 136
DtHelp.cat, 161
DtHelp.msg, 161
helpchar.ent , 52
helptag.dtd, 121
helptag.opt , 54
inserting contents of , 28

files, run–time help, creating , 12, 58
finding help files , 155
font

changing to bold, 41
for computer literal , 41
italic , 41, 42, 106
scheme, determining actual appearance , 162
scheme, for display , 164

font resources, specifying, 163
foreign language, creating help volume, 157
formal markup

entity declarations, 127
caveats, 124
defined, 10
processing of, 128
SGML compliance, 121

formal parameter, 117
front matter, uncategorized , 97
front matter , 95
function

DtHelpReturnSelectedWidgetId() , 141
HelpRequestCB() , 148, 149
ProcessOnItemHelp(), 141
XtAddCallback(), 144
XtAddCallback() , 138

G
gencat command , 161
general help dialog box

 features , 129, 130
creating , 130

general markup guidelines , 15
gentity parameter , 51, 98
getting help , 2

ghyperlink parameter , 50, 98
glinktype parameter , 50, 98
gloss parameter , 104
glossary

 component of help volume , 15
 element tag , 79
creating , 55
defining term in , 56
term, marking , 55
term, newly introduced , 104

_glossary ID , 27
goals for online help , 9
gposition parameter , 98
graphic

displaying , 50
displaying inline , 51
element within text , 80
including , 78
wrapping text around , 51

graphics, testing on various displays , 65
Greek letters , 112
group of related volumes, family as , 7
guidelines, markup , 15

H
heading

section , 102
starting new line , 81

heading line, continuing , 82
help

 topic organization, 7
 types of access, 9
actions, 12

help dialog
 detecting when dismissed, 145
 handling events in, 143

help entry points, required, 150
help family

 creating, 62
 defined, 7

help files, finding, 155
help key, 137
help menu, providing, 140
help on help

accessing, 132
application resource, 147
in quick help dialog box, 132
displaying , 149
quick help dialog box , 131
writing volume , 150

help topic, assigning ID names, 27
help volume

displaying , 60
components, 14
creating, 19
defined, 7
overview , 17
sample markup , 17

help volume, processing , 57

X-184CDE Help System Author’s and Programmer’s Guide

help, how users get , 2
Help4Help

location of Help4Help volume, 150
required entry points, 150
accessing from application , 147
copying source files , 150
helpOnHelpVolume resource , 147

helpchar.ent file, 111
helplang.ent file, 162
helpOnHelpVolume resource, setting , 148
HelpRequestCB() , 148, 149
helptag software, 57
helptag.dtd file, 121
helptag.opt file

 memo option , 54
 sample of, 59
 search option, 53

hierarchy
 adding nonhierarchical topic , 26
adding topic to , 24
topic, creating , 22

history, help ID for History dialog box, 150
home topic

 defined, 14
 in topic tree list, 5
 menu command, 5
 predefined help ID, 150
creating , 23

_hometopic ID , 27
horizontal space , 111
hyperlink

 attribute in link element, 90
 display formats, 4
application–defined link , 42
callback , 131
callback, providing , 144
creating , 42
definition link , 42
destination , 93
event, responding to , 144
execution link , 42
jump type , 42
man page link , 42
types , 42
validating hyperlinks , 65

hyperlink parameter , 46, 47
HyperlinkCB() , 131

I
ID

adding to element within topic , 28
adding to topic , 27
figure , 50
in list , 86
naming rules , 27
predefined names , 27

ID parameter
in element , 27

indent parameter, for image element , 84

indent parameter , for paragraph element, 98
index

 help ID for Index Search dialog box, 150
 help ID for Search Volume Selection Dialog

box, 150
 Index search dialog index, 5
 providing index–search ID , 150
creating , 54
marking entry , 54
sort order , 84

information model, help , 2
information, meta , 15
inline elements, entering , 40
inline elements, entering , 40
inline graphic, displaying , 51
input files, multiple , 18
inserting

 contents of another file , 28
comment , 53
special character , 52
writerÕs memo , 54

installation package, 152
international audiences, writing for , 166
introduction to Help System , 1
italic font , 41, 42, 106
item help

adding support for , 141
invoking , 141

item in list , 86

J
job of author , 9
jump type hyperlink , 42

K
key, enabling help (F1) , 137

L
labeled list , 87
LANG environment variable, 161
language

foreign , 157
formatting table, 162
multibyte , 157

leader
blank , 91
dotted , 91

line
continuing heading , 82
definition spanning more than one , 74
starting new heading , 81
wrapping , 81

line break
forcing , 96
within head, 81
within title , 33

line breaks, preserving , 77, 84, 107

X-185Index

link
 creating execution alias, 48
 to meta information, 47
creating application–defined , 46
creating definition , 45
creating man page , 46
hypertext , 90

list 36, 86, 87
bulleted , 91
entering , 35
item in , 86
labeled , 87
labeled, heading , 87
leader , 91
numbered , 91
plain , 91

literal, displaying computer , 41
locale, specifying for help volume, 160
localization , 157
location IDs, predefined, 27
loose parameter , 35, 87, 91

M
man page

creating link , 46
displaying , 137
hyperlink , 42

Man parameter , 46
managing help dialog boxes, 129
manual title , 105
markup

 formal (SGML), 10
 shorthand, 10
 shorthand , 16
guidelines , 15
sample help volume , 17

markup language
 formal markup, SGML–compliant, 10, 121
 shorthand markup, 10

markup reference , 66
math symbols , 113
memo option , 54
memo, inserting writerÕs , 54
menu

File, 5
providing help menu , 140
Search , 54

message catalog
 creating, 165
 DtHelp.msg file, 161
 translating, 161

meta information
 defined , 15
topic, creating , 24
topic, linking to , 47
volume title , 105

meta information , 95
mode, item help , 141
model, help information , 2

MoreHelpCB() , 131
multibyte language support, 157
multiple lines, definition spanning , 74
multiple occurrences of same string of text , 28
multiple source files , 18

N
native language support

 creating online help , 157
checklist for authors and translators , 166

navigation, help buttons, 5
new line

forcing start of , 96
within title , 33

new paragraph, starting , 98
nogloss parameter , 55, 104
nonhierarchical topic, adding , 26
nonumber parameter , 50, 78
note, adding, 39
number parameter , 77, 78
number, figure , 50
numbered list , 91

O
online help, objectives , 9
online presentation format, 57
option, memo , 54
order parameter , 35, 91
order, keyword index sort , 84
OSF/Motif, 2
overview

 Help graphical user interface, 3
help volume , 17

P
paragraph

indenting , 98
starting , 34

parameter
 alias_name , 48
AppDefined , 46
bullet , 35, 91
clean , 117
continue , 91
entity , 50, 78, 80
FILE , 29, 75
format , 117
gentity , 51, 98
ghyperlink , 50, 98
glinktype , 50, 98
gloss , 104
gposition , 98
hyperlink , 46, 47
ID in
indent , 34, 84, 98
loose , 35, 87, 91
Man , 46
nogloss , 55, 104

X-186CDE Help System Author’s and Programmer’s Guide

nonumber , 50, 78
number , 77, 78
order , 35, 91
plain , 35, 91
search , 53
shortnames , 117
smaller , 77, 107
smallest , 77, 107
tight , 35, 87, 91
verbose , 117

parameters in element , 16
parser errors, 59
percent symbol (%), used in shorthand markup ,

42
perspective, seeing help from userÕs , 12
pixmap , 50
plain list , 91
plain parameter , 35, 91
plus (+) , used in shorthand markup, 55, 104
points, entry, verifying in application , 65
predefined entities , 111
predefined ID

_abstract , 27
_copyright , 27
_glossary , 27
_hometopic , 27
_title , 27

printing
 dialog box, 6
 help ID for Print dialog box, 150
 help information, 6
help topics, 64

ProcessOnItemHelp() , 141
product family, finding , 155
product preparation checklist , 155
programmer, application

collaborating with , 10
responsibility , 12

prompt, user response to computer , 106

Q
quick help dialog box

 creating, 131
buttons, 131
creating , 131

quotation mark
 element for directional quotes, 100
 used in shorthand markup, 41
double, entity name for, 111
used in shorthand markup, 72

quotation marks, printing text within , 100

R
reference

entity reference , 52
section , 101
subsection , 101
to entity , 75

referencing external file , 28

related volumes, family as group of , 7
requests, responding to help , 134
reserved IDs, 27
resource

 DtNexecutionPolicy, 49
DtNhelpType , 135
DtNhelpVolume , 135
DtNlocationId , 135
DtNmanPage , 137
helpOnHelpVolume , 148

resources, specifying fonts, 163
responding to

help requests , 134
hyperlink event , 144

responsibility
author , 9
programmer , 12

reviewing
errors , 59
help as user will . See it

run–time files
 creating, 58
creating , 12

S

sample application, integrated help, 12
sample help volume markup , 17
sample standalone help volume, steps to create,

19
Search menu , 54
section

describing procedure , 100
heading , 102
heading within topic , 102
reference , 101
subsection within reference , 101
topic , 102

Semantic Delivery Language (SDL), 12
semicolon (;) , 29, 75
SGML, compliance , 121
shorthand markup, 10
shortnames parameter , 117
smaller parameter , 77, 107
smallest parameter , 77, 107
sort order, index , 84
source files, multiple , 18
space

horizontal , 111
significant , 111

spacing, preserving , 77, 84, 107
special characters, list of , 111
special characters, inserting , 52
standalone help, 2, 9
standalone help volume, sample , 19
Standard Generalized Markup Language (SGML),

121
start tag , 16
starting new line within title , 33

X-187Index

starting paragraph , 34, 98
string of text

displaying , 136
multiple occurrences of same , 28

structure, DtHelpDialogCallbackStruct , 144
structure within topic, creating , 34
structured editor, 10
subheading, within topic , 37, 97
subsection within reference section , 101
subtopics

creating , 24
definition , 14

summary
 Help System commands , 117
CDE HelpTag markup , 66

supporting item help mode , 141
symbol

inserting , 52
list of symbols , 111
plus (+) , 104

T
tag , 15
Tagged Image File Format (TIFF) , 50
tags, element , 66
term

defining in glossary , 56
definition , 79
glossary, marking , 55
newly introduced , 104

testing
graphics on various displays , 65
help , 65

text
 preserving line endings, 84
entity, creating , 29
file, displaying , 136
string, displaying , 136
untranslated , 76
wrapping around graphic , 51

TIFF (Tagged Image File Format) , 50
tight parameter , 35, 87, 91
title

abbreviating , 67
book , 70
entering book title, 41
help volume , 105
line break within , 33
list , 81
note , 81
section , 81
topic , 33, 71, 102

_title ID , 27
topic

 accessing, 27
 structure of elements, 33
accessing , 27
adding ID to , 27
adding ID to element within , 28

adding nonhierarchical , 26
adding to hierarchy , 24
creating hierarchy , 22
creating structure within , 34
defined , 7
displaying , 135
home , 14
home, creating , 23
linking to meta information , 47
providing subheadings within, 37
starting new , 71
subheading within , 97
subordinate , 14
title , 71, 102
volume as collection of , 7
writing , 33

topic tree
 selecting topic, 4
in general help dialog, 4

trademark, entity name, 111
typographical symbols , 111

U
unformatted text , 84
untranslated text , 76
userÕs perspective, seeing help from , 12
Using Help command, providing , 148

V
validating hyperlinks , 65
variable

displaying , 42
marking in command , 106

verbatim example , 107
verbose parameter , 117
verifying application entry points , 65
vertical bar, used in shorthand markup, 40
viewing help volume , 60
volume , 82

as collection of topics , 7
desktop browser volume, 8
displaying , 57
family of volumes , 7
finding , 155
overview , 17
registering , 152
sample standalone help volume , 19
title , 105
viewing , 60

W
warning statement, adding, 39
warning, of danger , 108
widget classes , 129
widget resources, 129
window dump , 50
wrapping text around graphic , 51
writerÕs memo, inserting , 53, 54

X-188CDE Help System Author’s and Programmer’s Guide

writing
for international audiences , 166
help on help volume , 150
topic , 33

X
X Window Dump , 50

creating cross–references , 43
examples , 109

XtAddCallback , 144
XtAddCallback() , 138
xwd graphic format, 50

